与えられた6つの数式をそれぞれ計算し、簡略化します。代数学式の計算簡略化分数式2025/4/291. 問題の内容与えられた6つの数式をそれぞれ計算し、簡略化します。2. 解き方の手順(1) 6ab÷3a=6ab3a=63⋅aa⋅b=2⋅1⋅b=2b6ab \div 3a = \frac{6ab}{3a} = \frac{6}{3} \cdot \frac{a}{a} \cdot b = 2 \cdot 1 \cdot b = 2b6ab÷3a=3a6ab=36⋅aa⋅b=2⋅1⋅b=2b(2) (−10xy)÷52x=−10xy⋅25x=−10xy⋅25x=−20xy5x=−205⋅xx⋅y=−4⋅1⋅y=−4y(-10xy) \div \frac{5}{2}x = -10xy \cdot \frac{2}{5x} = \frac{-10xy \cdot 2}{5x} = \frac{-20xy}{5x} = \frac{-20}{5} \cdot \frac{x}{x} \cdot y = -4 \cdot 1 \cdot y = -4y(−10xy)÷25x=−10xy⋅5x2=5x−10xy⋅2=5x−20xy=5−20⋅xx⋅y=−4⋅1⋅y=−4y(3) 8x2÷(−6x)=8x2−6x=8−6⋅x2x=−43⋅x=−43x8x^2 \div (-6x) = \frac{8x^2}{-6x} = \frac{8}{-6} \cdot \frac{x^2}{x} = -\frac{4}{3} \cdot x = -\frac{4}{3}x8x2÷(−6x)=−6x8x2=−68⋅xx2=−34⋅x=−34x(4) (−4xy2)÷12xy=−4xy2⋅2xy=−4xy2⋅2xy=−8xy2xy=−8⋅xx⋅y2y=−8⋅1⋅y=−8y(-4xy^2) \div \frac{1}{2}xy = -4xy^2 \cdot \frac{2}{xy} = \frac{-4xy^2 \cdot 2}{xy} = \frac{-8xy^2}{xy} = -8 \cdot \frac{x}{x} \cdot \frac{y^2}{y} = -8 \cdot 1 \cdot y = -8y(−4xy2)÷21xy=−4xy2⋅xy2=xy−4xy2⋅2=xy−8xy2=−8⋅xx⋅yy2=−8⋅1⋅y=−8y(5) 23b2c÷56bc2=23b2c⋅65bc2=2⋅63⋅5⋅b2b⋅cc2=1215⋅b⋅1c=45⋅bc=4b5c\frac{2}{3}b^2c \div \frac{5}{6}bc^2 = \frac{2}{3}b^2c \cdot \frac{6}{5bc^2} = \frac{2 \cdot 6}{3 \cdot 5} \cdot \frac{b^2}{b} \cdot \frac{c}{c^2} = \frac{12}{15} \cdot b \cdot \frac{1}{c} = \frac{4}{5} \cdot \frac{b}{c} = \frac{4b}{5c}32b2c÷65bc2=32b2c⋅5bc26=3⋅52⋅6⋅bb2⋅c2c=1512⋅b⋅c1=54⋅cb=5c4b(6) (−9xy)÷(−3xy)=−9xy−3xy=−9−3⋅xx⋅yy=3⋅1⋅1=3(-9xy) \div (-3xy) = \frac{-9xy}{-3xy} = \frac{-9}{-3} \cdot \frac{x}{x} \cdot \frac{y}{y} = 3 \cdot 1 \cdot 1 = 3(−9xy)÷(−3xy)=−3xy−9xy=−3−9⋅xx⋅yy=3⋅1⋅1=33. 最終的な答え(1) 2b2b2b(2) −4y-4y−4y(3) −43x-\frac{4}{3}x−34x(4) −8y-8y−8y(5) 4b5c\frac{4b}{5c}5c4b(6) 333