The problem asks to solve the differential equation: $y' = \frac{x-y}{x+y}$

AnalysisDifferential EquationsHomogeneous EquationsIntegrationSubstitution
2025/4/29

1. Problem Description

The problem asks to solve the differential equation:
y=xyx+yy' = \frac{x-y}{x+y}

2. Solution Steps

This is a homogeneous differential equation. We can solve this by substituting y=vxy = vx. Then y=v+xdvdxy' = v + x \frac{dv}{dx}.
Substituting into the differential equation:
v+xdvdx=xvxx+vx=x(1v)x(1+v)=1v1+vv + x \frac{dv}{dx} = \frac{x - vx}{x + vx} = \frac{x(1-v)}{x(1+v)} = \frac{1-v}{1+v}
xdvdx=1v1+vv=1vv(1+v)1+v=1vvv21+v=12vv21+vx \frac{dv}{dx} = \frac{1-v}{1+v} - v = \frac{1-v -v(1+v)}{1+v} = \frac{1-v-v-v^2}{1+v} = \frac{1-2v-v^2}{1+v}
Now we separate variables:
1+v12vv2dv=1xdx\frac{1+v}{1-2v-v^2} dv = \frac{1}{x} dx
Integrate both sides:
1+v12vv2dv=1xdx\int \frac{1+v}{1-2v-v^2} dv = \int \frac{1}{x} dx
Let u=12vv2u = 1-2v-v^2, then du=(22v)dv=2(1+v)dvdu = (-2-2v)dv = -2(1+v)dv, so (1+v)dv=12du(1+v)dv = -\frac{1}{2}du
1+v12vv2dv=12duu=121udu=12lnu+C1=12ln12vv2+C1\int \frac{1+v}{1-2v-v^2} dv = \int \frac{-\frac{1}{2}du}{u} = -\frac{1}{2} \int \frac{1}{u} du = -\frac{1}{2} \ln|u| + C_1 = -\frac{1}{2} \ln|1-2v-v^2| + C_1
1xdx=lnx+C2\int \frac{1}{x} dx = \ln|x| + C_2
Therefore,
12ln12vv2=lnx+C-\frac{1}{2} \ln|1-2v-v^2| = \ln|x| + C
ln12vv2=2lnx2C\ln|1-2v-v^2| = -2 \ln|x| - 2C
ln12vv2=lnx2+C\ln|1-2v-v^2| = \ln|x^{-2}| + C'
12vv2=elnx2+C=eCx2=Ax21-2v-v^2 = e^{\ln|x^{-2}| + C'} = e^{C'} x^{-2} = Ax^{-2} where A=eCA = e^{C'}
12vv2=Ax21-2v-v^2 = \frac{A}{x^2}
Substituting back v=yxv = \frac{y}{x},
12(yx)(yx)2=Ax21-2(\frac{y}{x}) - (\frac{y}{x})^2 = \frac{A}{x^2}
12yxy2x2=Ax21 - \frac{2y}{x} - \frac{y^2}{x^2} = \frac{A}{x^2}
x22xyy2=Ax^2 - 2xy - y^2 = A

3. Final Answer

x22xyy2=Ax^2 - 2xy - y^2 = A

Related problems in "Analysis"

The problem is to evaluate the indefinite integral: $\int \sqrt{3x-5} dx$

IntegrationIndefinite IntegralSubstitution RulePower Rule
2025/4/30

The problem asks us to evaluate the definite integral $\int (2x+1)^7 dx$.

Definite IntegralIntegrationSubstitutionPower Rule
2025/4/30

The problem asks to evaluate the indefinite integral $\int (2x+1)^7 dx$.

Integrationu-substitutionIndefinite IntegralPower Rule
2025/4/30

The problem is to evaluate the integral of a rational function: $\int \frac{1+3x+7x^2-2x^3}{x^2} dx$

IntegrationRational FunctionsCalculus
2025/4/30

The problem asks us to calculate the indefinite integral of the function $\frac{1+3x+7x^2-2x^3}{x^2}...

CalculusIntegrationIndefinite IntegralFunctions
2025/4/30

The problem asks us to evaluate the indefinite integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

Indefinite Integralu-substitutionCalculus
2025/4/30

We are asked to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} dx$.

IntegrationSubstitutionDefinite IntegralCalculus
2025/4/30

We need to evaluate the integral $I = \int \frac{x^3}{\sqrt{4-x^2}} \, dx$.

IntegrationSubstitutionDefinite Integral
2025/4/30

The problem asks to evaluate the integral: $I = \int \frac{x^3}{\sqrt{4 - x^2}} dx$

IntegrationTrigonometric SubstitutionDefinite Integral
2025/4/30

The problem is to evaluate the following four integrals, showing two different methods for solving e...

IntegrationDefinite Integralsu-substitutionTrigonometric IdentitiesExponential IntegralCalculus
2025/4/29