与えられた等式 $1 + 3 + 5 + \dots + (2n - 1) = n^2$ の数学的帰納法による証明の最初のステップ($n=1$のとき)における左辺と右辺の値を求める問題です。

数論数学的帰納法等式整数の和
2025/4/29

1. 問題の内容

与えられた等式 1+3+5++(2n1)=n21 + 3 + 5 + \dots + (2n - 1) = n^2 の数学的帰納法による証明の最初のステップ(n=1n=1のとき)における左辺と右辺の値を求める問題です。

2. 解き方の手順

n=1n=1 のとき、与えられた等式の左辺と右辺にそれぞれ n=1n=1 を代入します。
左辺は、1+3+5++(2n1)1 + 3 + 5 + \dots + (2n - 1)nn11 を代入すると、2n1=2(1)1=12n - 1 = 2(1) - 1 = 1 なので、左辺は 11 となります。
右辺は、n2n^2nn11 を代入すると、12=11^2 = 1 となります。

3. 最終的な答え

(左辺) = 1
(右辺) = 1

「数論」の関連問題

自然数 $n$ と $540$ の最小公倍数が $2700$ であるような自然数 $n$ の個数を求める。

最小公倍数素因数分解整数の性質
2025/4/30

自然数 $n$ と $200$ の最小公倍数が $4400$ であるような自然数 $n$ の個数を求める。

最小公倍数素因数分解整数の性質
2025/4/30

問題は以下の3つの命題の対偶を述べ、対偶を証明するというものです。 (1) $a^2$ が 2 の倍数ならば、$a$ も 2 の倍数である。 (2) $a^2 + b^2$ が 3 で割り切れるならば...

命題対偶整数の性質合同式倍数割り算
2025/4/29

自然数 $n$ に対して、$n$ 以下の自然数のうち $n$ と互いに素であるものの個数を $\phi(n)$、正の約数の個数を $d(n)$ とする。 (1) $\phi(n)$ と $d(n)$ ...

Euler's totient functiondivisor function整数の性質素数平方数
2025/4/29

自然数 $n$ に対して、$n$ 以下の自然数のうち $n$ と互いに素であるものの個数を $\phi(n)$、正の約数の個数を $d(n)$ とする。 (1) $\phi(n) = d(n)$ とな...

Eulerのφ関数約数関数整数の性質素数平方数
2025/4/29

整数$a, b$があり、$a$を8で割ると余りが4、$b$を8で割ると余りが5であるとき、次の数を8で割ったときの余りを求めます。 (1) $a+b$ (2) $a-b$ (3) $5a+4b$ (4...

合同算術剰余整数の性質
2025/4/29

以下の3つの命題を証明する問題です。 (1) $a, b$ が3の倍数ならば、$a + 2b$ も3の倍数である。 (2) $a, a-b$ が7の倍数ならば、$b$ も7の倍数である。 (3) $a...

整数の性質倍数証明
2025/4/29

以下の条件を満たす2つの自然数の組 $(a, b)$ をすべて求めます。ただし、$a < b$とします。 (1) 和が320、最大公約数が16 (2) 積が720、最大公約数が6 (...

最大公約数最小公倍数約数倍数整数の性質
2025/4/29

21から30までの自然数の中で、素数をすべて答える問題です。

素数約数整数の性質
2025/4/29

方程式 $35x - 29y = 3$ の全ての整数解を求める。

不定方程式整数解ユークリッドの互除法
2025/4/29