次の定積分を計算します。 $\int_{0}^{1} \log(x^2 + 1) \, dx$解析学定積分部分積分対数関数arctan2025/3/181. 問題の内容次の定積分を計算します。∫01log(x2+1) dx\int_{0}^{1} \log(x^2 + 1) \, dx∫01log(x2+1)dx2. 解き方の手順部分積分を用いて計算します。u=log(x2+1)u = \log(x^2 + 1)u=log(x2+1), dv=dxdv = dxdv=dx とおくと、du=2xx2+1dxdu = \frac{2x}{x^2+1} dxdu=x2+12xdx, v=xv = xv=x となります。したがって、∫01log(x2+1) dx=[xlog(x2+1)]01−∫012x2x2+1 dx\int_{0}^{1} \log(x^2 + 1) \, dx = \left[ x \log(x^2 + 1) \right]_0^1 - \int_{0}^{1} \frac{2x^2}{x^2+1} \, dx∫01log(x2+1)dx=[xlog(x2+1)]01−∫01x2+12x2dx=[xlog(x2+1)]01−2∫01x2+1−1x2+1 dx= \left[ x \log(x^2 + 1) \right]_0^1 - 2 \int_{0}^{1} \frac{x^2+1-1}{x^2+1} \, dx=[xlog(x2+1)]01−2∫01x2+1x2+1−1dx=[xlog(x2+1)]01−2∫01(1−1x2+1) dx= \left[ x \log(x^2 + 1) \right]_0^1 - 2 \int_{0}^{1} \left( 1 - \frac{1}{x^2+1} \right) \, dx=[xlog(x2+1)]01−2∫01(1−x2+11)dx=[xlog(x2+1)]01−2[x−arctan(x)]01= \left[ x \log(x^2 + 1) \right]_0^1 - 2 \left[ x - \arctan(x) \right]_0^1=[xlog(x2+1)]01−2[x−arctan(x)]01=(1⋅log(12+1)−0⋅log(02+1))−2((1−arctan(1))−(0−arctan(0)))= (1 \cdot \log(1^2 + 1) - 0 \cdot \log(0^2 + 1)) - 2 ( (1 - \arctan(1)) - (0 - \arctan(0)) )=(1⋅log(12+1)−0⋅log(02+1))−2((1−arctan(1))−(0−arctan(0)))=log(2)−2(1−π4)= \log(2) - 2(1 - \frac{\pi}{4})=log(2)−2(1−4π)=log(2)−2+π2= \log(2) - 2 + \frac{\pi}{2}=log(2)−2+2π3. 最終的な答えlog(2)−2+π2\log(2) - 2 + \frac{\pi}{2}log(2)−2+2π