与えられた極限を求めます。 $\lim_{n\to\infty} n^2 (\sqrt{n^2+n} - \sqrt{n^2-n})$解析学極限数列有理化テイラー展開発散2025/3/181. 問題の内容与えられた極限を求めます。limn→∞n2(n2+n−n2−n)\lim_{n\to\infty} n^2 (\sqrt{n^2+n} - \sqrt{n^2-n})limn→∞n2(n2+n−n2−n)2. 解き方の手順まず、n2+n−n2−n\sqrt{n^2+n} - \sqrt{n^2-n}n2+n−n2−n を有理化します。n2+n−n2−n=(n2+n−n2−n)(n2+n+n2−n)n2+n+n2−n\sqrt{n^2+n} - \sqrt{n^2-n} = \frac{(\sqrt{n^2+n} - \sqrt{n^2-n})(\sqrt{n^2+n} + \sqrt{n^2-n})}{\sqrt{n^2+n} + \sqrt{n^2-n}}n2+n−n2−n=n2+n+n2−n(n2+n−n2−n)(n2+n+n2−n)=(n2+n)−(n2−n)n2+n+n2−n=2nn2+n+n2−n= \frac{(n^2+n) - (n^2-n)}{\sqrt{n^2+n} + \sqrt{n^2-n}} = \frac{2n}{\sqrt{n^2+n} + \sqrt{n^2-n}}=n2+n+n2−n(n2+n)−(n2−n)=n2+n+n2−n2nしたがって、n2(n2+n−n2−n)=n22nn2+n+n2−n=2n3n2+n+n2−nn^2(\sqrt{n^2+n} - \sqrt{n^2-n}) = n^2 \frac{2n}{\sqrt{n^2+n} + \sqrt{n^2-n}} = \frac{2n^3}{\sqrt{n^2+n} + \sqrt{n^2-n}}n2(n2+n−n2−n)=n2n2+n+n2−n2n=n2+n+n2−n2n3ここで、分母と分子をnnnで割ります。=2n3n(1+1n+1−1n)=2n21+1n+1−1n= \frac{2n^3}{n(\sqrt{1+\frac{1}{n}} + \sqrt{1-\frac{1}{n}})} = \frac{2n^2}{\sqrt{1+\frac{1}{n}} + \sqrt{1-\frac{1}{n}}}=n(1+n1+1−n1)2n3=1+n1+1−n12n2ここで、n→∞n \to \inftyn→∞ のとき 1n→0\frac{1}{n} \to 0n1→0 なので、limn→∞2n21+1n+1−1n=limn→∞2n21+0+1−0=limn→∞2n21+1=limn→∞n2\lim_{n\to\infty} \frac{2n^2}{\sqrt{1+\frac{1}{n}} + \sqrt{1-\frac{1}{n}}} = \lim_{n\to\infty} \frac{2n^2}{\sqrt{1+0} + \sqrt{1-0}} = \lim_{n\to\infty} \frac{2n^2}{1+1} = \lim_{n\to\infty} n^2n→∞lim1+n1+1−n12n2=n→∞lim1+0+1−02n2=n→∞lim1+12n2=n→∞limn2これは明らかに発散します。しかし、別の解法を試します。2n3n2+n+n2−n=2n3n2(1+1/n)+n2(1−1/n)=2n3n1+1/n+n1−1/n=2n21+1/n+1−1/n \frac{2n^3}{\sqrt{n^2+n}+\sqrt{n^2-n}} = \frac{2n^3}{\sqrt{n^2(1+1/n)}+\sqrt{n^2(1-1/n)}} = \frac{2n^3}{n\sqrt{1+1/n}+n\sqrt{1-1/n}} = \frac{2n^2}{\sqrt{1+1/n}+\sqrt{1-1/n}}n2+n+n2−n2n3=n2(1+1/n)+n2(1−1/n)2n3=n1+1/n+n1−1/n2n3=1+1/n+1−1/n2n2nnnが大きいとき、1/n1/n1/nは小さいので、1+x≈1+x/2\sqrt{1+x} \approx 1+x/21+x≈1+x/2 という近似を使うと1+1/n≈1+12n\sqrt{1+1/n} \approx 1+\frac{1}{2n}1+1/n≈1+2n11−1/n≈1−12n\sqrt{1-1/n} \approx 1-\frac{1}{2n}1−1/n≈1−2n1となるので2n21+1/n+1−1/n≈2n21+12n+1−12n=2n22=n2 \frac{2n^2}{\sqrt{1+1/n}+\sqrt{1-1/n}} \approx \frac{2n^2}{1+\frac{1}{2n}+1-\frac{1}{2n}} = \frac{2n^2}{2} = n^2 1+1/n+1−1/n2n2≈1+2n1+1−2n12n2=22n2=n2となるので、発散します。テイラー展開で考えます。1+x=1+12x−18x2+…\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots1+x=1+21x−81x2+…よってn2+n=n1+1/n=n(1+12n−18n2+… )=n+12−18n+…\sqrt{n^2+n} = n\sqrt{1+1/n} = n(1+\frac{1}{2n}-\frac{1}{8n^2}+\dots) = n+\frac{1}{2}-\frac{1}{8n}+\dotsn2+n=n1+1/n=n(1+2n1−8n21+…)=n+21−8n1+…n2−n=n1−1/n=n(1−12n−18n2−… )=n−12−18n−…\sqrt{n^2-n} = n\sqrt{1-1/n} = n(1-\frac{1}{2n}-\frac{1}{8n^2}-\dots) = n-\frac{1}{2}-\frac{1}{8n}-\dotsn2−n=n1−1/n=n(1−2n1−8n21−…)=n−21−8n1−…n2+n−n2−n=(n+12−18n)−(n−12−18n)+⋯=1+O(1n)\sqrt{n^2+n}-\sqrt{n^2-n} = (n+\frac{1}{2}-\frac{1}{8n}) - (n-\frac{1}{2}-\frac{1}{8n}) + \dots = 1 + O(\frac{1}{n})n2+n−n2−n=(n+21−8n1)−(n−21−8n1)+⋯=1+O(n1)よってlimn→∞n2(n2+n−n2−n)=limn→∞n2(1+O(1n))=limn→∞(n2+O(n))\lim_{n\to\infty} n^2 (\sqrt{n^2+n} - \sqrt{n^2-n}) = \lim_{n\to\infty} n^2 (1 + O(\frac{1}{n})) = \lim_{n\to\infty} (n^2 + O(n))limn→∞n2(n2+n−n2−n)=limn→∞n2(1+O(n1))=limn→∞(n2+O(n))これは無限大に発散します。もう一度計算します。limn→∞n2(n2+n−n2−n)=limn→∞n22nn2+n+n2−n=limn→∞2n3n1+1/n+n1−1/n=limn→∞2n21+1/n+1−1/n\lim_{n \to \infty} n^2 (\sqrt{n^2+n} - \sqrt{n^2-n}) = \lim_{n \to \infty} n^2 \frac{2n}{\sqrt{n^2+n} + \sqrt{n^2-n}} = \lim_{n \to \infty} \frac{2n^3}{n\sqrt{1+1/n} + n\sqrt{1-1/n}} = \lim_{n \to \infty} \frac{2n^2}{\sqrt{1+1/n} + \sqrt{1-1/n}}n→∞limn2(n2+n−n2−n)=n→∞limn2n2+n+n2−n2n=n→∞limn1+1/n+n1−1/n2n3=n→∞lim1+1/n+1−1/n2n2=limn→∞2n21+0+1−0=limn→∞2n22=limn→∞n2=∞ = \lim_{n \to \infty} \frac{2n^2}{\sqrt{1+0} + \sqrt{1-0}} = \lim_{n \to \infty} \frac{2n^2}{2} = \lim_{n \to \infty} n^2 = \infty=n→∞lim1+0+1−02n2=n→∞lim22n2=n→∞limn2=∞3. 最終的な答え∞\infty∞