定積分 $\int_{0}^{1} \log(x^2+1) \, dx$ を計算します。

解析学定積分部分積分対数関数arctan
2025/3/18

1. 問題の内容

定積分 01log(x2+1)dx\int_{0}^{1} \log(x^2+1) \, dx を計算します。

2. 解き方の手順

部分積分を用いて解きます。
udv=uvvdu\int u dv = uv - \int v du
u=log(x2+1)u = \log(x^2+1), dv=dxdv = dx とすると、
du=2xx2+1dxdu = \frac{2x}{x^2+1} dx, v=xv = x
01log(x2+1)dx=[xlog(x2+1)]01012x2x2+1dx\int_{0}^{1} \log(x^2+1) \, dx = [x \log(x^2+1)]_{0}^{1} - \int_{0}^{1} \frac{2x^2}{x^2+1} dx
=1log(12+1)0log(02+1)012x2x2+1dx= 1 \cdot \log(1^2+1) - 0 \cdot \log(0^2+1) - \int_{0}^{1} \frac{2x^2}{x^2+1} dx
=log(2)012x2x2+1dx= \log(2) - \int_{0}^{1} \frac{2x^2}{x^2+1} dx
ここで、012x2x2+1dx=012(x2+11)x2+1dx=0122x2+1dx\int_{0}^{1} \frac{2x^2}{x^2+1} dx = \int_{0}^{1} \frac{2(x^2+1-1)}{x^2+1} dx = \int_{0}^{1} 2 - \frac{2}{x^2+1} dx
=[2x2arctan(x)]01=(2(1)2arctan(1))(2(0)2arctan(0))= [2x - 2\arctan(x)]_{0}^{1} = (2(1) - 2\arctan(1)) - (2(0) - 2\arctan(0))
=22(π4)=2π2= 2 - 2(\frac{\pi}{4}) = 2 - \frac{\pi}{2}
よって、
01log(x2+1)dx=log(2)(2π2)=log(2)2+π2\int_{0}^{1} \log(x^2+1) \, dx = \log(2) - (2 - \frac{\pi}{2}) = \log(2) - 2 + \frac{\pi}{2}

3. 最終的な答え

log(2)2+π2\log(2) - 2 + \frac{\pi}{2}