定積分 $\int_{0}^{1} \log(x^2+1) \, dx$ を計算します。解析学定積分部分積分対数関数arctan2025/3/181. 問題の内容定積分 ∫01log(x2+1) dx\int_{0}^{1} \log(x^2+1) \, dx∫01log(x2+1)dx を計算します。2. 解き方の手順部分積分を用いて解きます。∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vduu=log(x2+1)u = \log(x^2+1)u=log(x2+1), dv=dxdv = dxdv=dx とすると、du=2xx2+1dxdu = \frac{2x}{x^2+1} dxdu=x2+12xdx, v=xv = xv=x∫01log(x2+1) dx=[xlog(x2+1)]01−∫012x2x2+1dx\int_{0}^{1} \log(x^2+1) \, dx = [x \log(x^2+1)]_{0}^{1} - \int_{0}^{1} \frac{2x^2}{x^2+1} dx∫01log(x2+1)dx=[xlog(x2+1)]01−∫01x2+12x2dx=1⋅log(12+1)−0⋅log(02+1)−∫012x2x2+1dx= 1 \cdot \log(1^2+1) - 0 \cdot \log(0^2+1) - \int_{0}^{1} \frac{2x^2}{x^2+1} dx=1⋅log(12+1)−0⋅log(02+1)−∫01x2+12x2dx=log(2)−∫012x2x2+1dx= \log(2) - \int_{0}^{1} \frac{2x^2}{x^2+1} dx=log(2)−∫01x2+12x2dxここで、∫012x2x2+1dx=∫012(x2+1−1)x2+1dx=∫012−2x2+1dx\int_{0}^{1} \frac{2x^2}{x^2+1} dx = \int_{0}^{1} \frac{2(x^2+1-1)}{x^2+1} dx = \int_{0}^{1} 2 - \frac{2}{x^2+1} dx∫01x2+12x2dx=∫01x2+12(x2+1−1)dx=∫012−x2+12dx=[2x−2arctan(x)]01=(2(1)−2arctan(1))−(2(0)−2arctan(0))= [2x - 2\arctan(x)]_{0}^{1} = (2(1) - 2\arctan(1)) - (2(0) - 2\arctan(0))=[2x−2arctan(x)]01=(2(1)−2arctan(1))−(2(0)−2arctan(0))=2−2(π4)=2−π2= 2 - 2(\frac{\pi}{4}) = 2 - \frac{\pi}{2}=2−2(4π)=2−2πよって、∫01log(x2+1) dx=log(2)−(2−π2)=log(2)−2+π2\int_{0}^{1} \log(x^2+1) \, dx = \log(2) - (2 - \frac{\pi}{2}) = \log(2) - 2 + \frac{\pi}{2}∫01log(x2+1)dx=log(2)−(2−2π)=log(2)−2+2π3. 最終的な答えlog(2)−2+π2\log(2) - 2 + \frac{\pi}{2}log(2)−2+2π