$(x+y)^3 (x-y)^3$ を展開せよ。代数学展開多項式因数分解二項定理2025/4/291. 問題の内容(x+y)3(x−y)3(x+y)^3 (x-y)^3(x+y)3(x−y)3 を展開せよ。2. 解き方の手順まず、(x+y)3(x+y)^3(x+y)3 と (x−y)3(x-y)^3(x−y)3 をそれぞれ展開する。(x+y)3=x3+3x2y+3xy2+y3(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3(x+y)3=x3+3x2y+3xy2+y3(x−y)3=x3−3x2y+3xy2−y3(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3(x−y)3=x3−3x2y+3xy2−y3次に、これらの結果を掛け合わせる。(x+y)3(x−y)3=(x3+3x2y+3xy2+y3)(x3−3x2y+3xy2−y3)(x+y)^3 (x-y)^3 = (x^3 + 3x^2y + 3xy^2 + y^3)(x^3 - 3x^2y + 3xy^2 - y^3)(x+y)3(x−y)3=(x3+3x2y+3xy2+y3)(x3−3x2y+3xy2−y3)ここで、A=x3+3xy2A = x^3 + 3xy^2A=x3+3xy2 、B=3x2y+y3B = 3x^2y + y^3B=3x2y+y3 とおくと、(A+B)(A−B)=A2−B2(A+B)(A-B) = A^2 - B^2(A+B)(A−B)=A2−B2 となる。よって、(x+y)3(x−y)3=(x3+3xy2)2−(3x2y+y3)2(x+y)^3 (x-y)^3 = (x^3 + 3xy^2)^2 - (3x^2y + y^3)^2(x+y)3(x−y)3=(x3+3xy2)2−(3x2y+y3)2=(x6+6x4y2+9x2y4)−(9x4y2+6x2y4+y6)= (x^6 + 6x^4y^2 + 9x^2y^4) - (9x^4y^2 + 6x^2y^4 + y^6)=(x6+6x4y2+9x2y4)−(9x4y2+6x2y4+y6)=x6+6x4y2+9x2y4−9x4y2−6x2y4−y6= x^6 + 6x^4y^2 + 9x^2y^4 - 9x^4y^2 - 6x^2y^4 - y^6=x6+6x4y2+9x2y4−9x4y2−6x2y4−y6=x6−3x4y2+3x2y4−y6= x^6 - 3x^4y^2 + 3x^2y^4 - y^6=x6−3x4y2+3x2y4−y6別の解法として、(x+y)3(x−y)3=((x+y)(x−y))3=(x2−y2)3(x+y)^3(x-y)^3 = ((x+y)(x-y))^3 = (x^2-y^2)^3(x+y)3(x−y)3=((x+y)(x−y))3=(x2−y2)3(x2−y2)3=(x2)3−3(x2)2(y2)+3(x2)(y2)2−(y2)3(x^2-y^2)^3 = (x^2)^3 - 3(x^2)^2(y^2) + 3(x^2)(y^2)^2 - (y^2)^3(x2−y2)3=(x2)3−3(x2)2(y2)+3(x2)(y2)2−(y2)3=x6−3x4y2+3x2y4−y6= x^6 - 3x^4y^2 + 3x^2y^4 - y^6=x6−3x4y2+3x2y4−y63. 最終的な答えx6−3x4y2+3x2y4−y6x^6 - 3x^4y^2 + 3x^2y^4 - y^6x6−3x4y2+3x2y4−y6