与えられた関数 $y = x\sqrt{x}$ の微分を求めます。

解析学微分関数の微分べき関数ルート指数
2025/4/30

1. 問題の内容

与えられた関数 y=xxy = x\sqrt{x} の微分を求めます。

2. 解き方の手順

まず、x\sqrt{x}xx の指数で表します。x=x1/2\sqrt{x} = x^{1/2} なので、y=xx1/2y = x \cdot x^{1/2} となります。
次に、指数の法則を用いて、xx の指数をまとめます。xaxb=xa+bx^a \cdot x^b = x^{a+b} なので、y=x1+1/2=x3/2y = x^{1 + 1/2} = x^{3/2} となります。
最後に、べき関数の微分公式 ddxxn=nxn1\frac{d}{dx} x^n = nx^{n-1} を用いて微分します。
dydx=ddxx3/2=32x321=32x12=32x\frac{dy}{dx} = \frac{d}{dx} x^{3/2} = \frac{3}{2} x^{\frac{3}{2} - 1} = \frac{3}{2} x^{\frac{1}{2}} = \frac{3}{2} \sqrt{x}

3. 最終的な答え

dydx=32x\frac{dy}{dx} = \frac{3}{2} \sqrt{x}

「解析学」の関連問題

$\arctan x$ のテイラー展開 $\arctan x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{2n-1} = x - \frac{x^...

テイラー展開arctan円周率近似
2025/4/30

$\arctan x$ のテイラー展開 $\arctan x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{2n-1} = x - \frac{x^...

テイラー展開マクローリン展開arctan近似値無限級数
2025/4/30

$\arctan x$ のテイラー展開を利用して、$|x|<1$ の条件下で $\pi$ の近似値を小数第4位まで求める問題です。与えられたテイラー展開は $$ \arctan x = \sum_{n...

テイラー展開arctan近似計算級数
2025/4/30

数列 $a_n = \left(\frac{n+3}{n+1}\right)^n$ の極限を求める問題です。

数列極限指数関数e
2025/4/30

次の等式が成り立つことを示す問題です。 $4 \arctan \frac{1}{5} - \arctan \frac{1}{239} = \frac{\pi}{4}$

逆正接関数arctan加法定理三角関数
2025/4/30

問題は、$\tan \alpha = \frac{1}{5}$ を満たす $0 < \alpha < \frac{\pi}{2}$ のとき、以下の式を示すことです。 $\tan(2\alpha) = ...

三角関数加法定理tan
2025/4/30

問題は、以下の3つの部分から構成されています。 (1) $0 < \alpha < \frac{\pi}{2}$ かつ $\tan \alpha = \frac{1}{5}$ を満たすとき、$\tan...

三角関数加法定理逆三角関数テイラー展開πの近似
2025/4/30

数列 $a_n = \left(1 - \frac{1}{n}\right)^n$ の極限 $\lim_{n \to \infty} a_n$ を求める問題です。

数列極限指数関数e
2025/4/30

$\lim_{x \to 0} \frac{1}{x^3} \left\{ \sqrt{1+x} - \left( 1 + \frac{1}{2}x + \alpha x^2 \right) \rig...

極限テイラー展開二項定理関数の極限
2025/4/30

問題は、$\sum_{k=1}^{n} \frac{2}{13^k}$ の値を求める問題です。選択肢の中から正しいものを選び、正しくない場合は⑤を選択します。

級数等比数列和の公式
2025/4/30