次の等式が成り立つことを示す問題です。 $4 \arctan \frac{1}{5} - \arctan \frac{1}{239} = \frac{\pi}{4}$解析学逆正接関数arctan加法定理三角関数2025/4/301. 問題の内容次の等式が成り立つことを示す問題です。4arctan15−arctan1239=π44 \arctan \frac{1}{5} - \arctan \frac{1}{239} = \frac{\pi}{4}4arctan51−arctan2391=4π2. 解き方の手順まず、2arctan152 \arctan \frac{1}{5}2arctan51 を計算します。arctan\arctanarctanの加法定理を利用します。arctanx+arctany=arctanx+y1−xy\arctan x + \arctan y = \arctan \frac{x+y}{1-xy}arctanx+arctany=arctan1−xyx+y2arctan15=arctan15+arctan15=arctan15+151−15⋅15=arctan251−125=arctan252425=arctan25⋅2524=arctan5122 \arctan \frac{1}{5} = \arctan \frac{1}{5} + \arctan \frac{1}{5} = \arctan \frac{\frac{1}{5}+\frac{1}{5}}{1-\frac{1}{5}\cdot\frac{1}{5}} = \arctan \frac{\frac{2}{5}}{1-\frac{1}{25}} = \arctan \frac{\frac{2}{5}}{\frac{24}{25}} = \arctan \frac{2}{5} \cdot \frac{25}{24} = \arctan \frac{5}{12}2arctan51=arctan51+arctan51=arctan1−51⋅5151+51=arctan1−25152=arctan252452=arctan52⋅2425=arctan125次に、4arctan154 \arctan \frac{1}{5}4arctan51 を計算するために、2arctan5122 \arctan \frac{5}{12}2arctan125 を計算します。2arctan512=arctan512+arctan512=arctan512+5121−512⋅512=arctan10121−25144=arctan56119144=arctan56⋅144119=arctan5⋅24119=arctan1201192 \arctan \frac{5}{12} = \arctan \frac{5}{12} + \arctan \frac{5}{12} = \arctan \frac{\frac{5}{12}+\frac{5}{12}}{1-\frac{5}{12}\cdot\frac{5}{12}} = \arctan \frac{\frac{10}{12}}{1-\frac{25}{144}} = \arctan \frac{\frac{5}{6}}{\frac{119}{144}} = \arctan \frac{5}{6} \cdot \frac{144}{119} = \arctan \frac{5 \cdot 24}{119} = \arctan \frac{120}{119}2arctan125=arctan125+arctan125=arctan1−125⋅125125+125=arctan1−144251210=arctan14411965=arctan65⋅119144=arctan1195⋅24=arctan119120したがって、4arctan15=arctan1201194 \arctan \frac{1}{5} = \arctan \frac{120}{119}4arctan51=arctan119120となります。最後に、4arctan15−arctan12394 \arctan \frac{1}{5} - \arctan \frac{1}{239}4arctan51−arctan2391 を計算します。arctan\arctanarctanの加法定理の変形版を利用します。arctanx−arctany=arctanx−y1+xy\arctan x - \arctan y = \arctan \frac{x-y}{1+xy}arctanx−arctany=arctan1+xyx−y4arctan15−arctan1239=arctan120119−arctan1239=arctan120119−12391+120119⋅1239=arctan120⋅239−119119⋅2391+120119⋅239=arctan28680−119119⋅239+120=arctan2856128441+120=arctan2856128561=arctan1=π44 \arctan \frac{1}{5} - \arctan \frac{1}{239} = \arctan \frac{120}{119} - \arctan \frac{1}{239} = \arctan \frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119}\cdot\frac{1}{239}} = \arctan \frac{\frac{120\cdot239-119}{119\cdot239}}{1+\frac{120}{119\cdot239}} = \arctan \frac{28680-119}{119\cdot239+120} = \arctan \frac{28561}{28441+120} = \arctan \frac{28561}{28561} = \arctan 1 = \frac{\pi}{4}4arctan51−arctan2391=arctan119120−arctan2391=arctan1+119120⋅2391119120−2391=arctan1+119⋅239120119⋅239120⋅239−119=arctan119⋅239+12028680−119=arctan28441+12028561=arctan2856128561=arctan1=4π3. 最終的な答え4arctan15−arctan1239=π44 \arctan \frac{1}{5} - \arctan \frac{1}{239} = \frac{\pi}{4}4arctan51−arctan2391=4π