与えられた定積分 $\int_{1}^{2} x \log(x+1) \, dx$ を計算します。解析学定積分部分積分対数関数積分計算2025/4/301. 問題の内容与えられた定積分 ∫12xlog(x+1) dx\int_{1}^{2} x \log(x+1) \, dx∫12xlog(x+1)dx を計算します。2. 解き方の手順部分積分を使って解きます。部分積分の公式は ∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu です。u=log(x+1)u = \log(x+1)u=log(x+1) と dv=x dxdv = x \, dxdv=xdx と置きます。すると、du=1x+1 dxdu = \frac{1}{x+1} \, dxdu=x+11dx と v=x22v = \frac{x^2}{2}v=2x2 となります。よって、∫xlog(x+1) dx=x22log(x+1)−∫x22⋅1x+1 dx\int x \log(x+1) \, dx = \frac{x^2}{2} \log(x+1) - \int \frac{x^2}{2} \cdot \frac{1}{x+1} \, dx∫xlog(x+1)dx=2x2log(x+1)−∫2x2⋅x+11dx∫x22(x+1) dx\int \frac{x^2}{2(x+1)} \, dx∫2(x+1)x2dx を計算します。x2x+1=x−1+1x+1\frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}x+1x2=x−1+x+11 なので、∫x22(x+1) dx=12∫(x−1+1x+1) dx=12(x22−x+log∣x+1∣)+C\int \frac{x^2}{2(x+1)} \, dx = \frac{1}{2} \int (x - 1 + \frac{1}{x+1}) \, dx = \frac{1}{2} (\frac{x^2}{2} - x + \log|x+1|) + C∫2(x+1)x2dx=21∫(x−1+x+11)dx=21(2x2−x+log∣x+1∣)+Cしたがって、∫xlog(x+1) dx=x22log(x+1)−12(x22−x+log∣x+1∣)+C=x22log(x+1)−x24+x2−12log(x+1)+C\int x \log(x+1) \, dx = \frac{x^2}{2} \log(x+1) - \frac{1}{2} (\frac{x^2}{2} - x + \log|x+1|) + C = \frac{x^2}{2} \log(x+1) - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2} \log(x+1) + C∫xlog(x+1)dx=2x2log(x+1)−21(2x2−x+log∣x+1∣)+C=2x2log(x+1)−4x2+2x−21log(x+1)+C定積分を計算します。∫12xlog(x+1) dx=[x22log(x+1)−x24+x2−12log(x+1)]12\int_{1}^{2} x \log(x+1) \, dx = [\frac{x^2}{2} \log(x+1) - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2} \log(x+1)]_{1}^{2}∫12xlog(x+1)dx=[2x2log(x+1)−4x2+2x−21log(x+1)]12=(2log(3)−1+1−12log(3))−(12log(2)−14+12−12log(2))= (2 \log(3) - 1 + 1 - \frac{1}{2} \log(3)) - (\frac{1}{2} \log(2) - \frac{1}{4} + \frac{1}{2} - \frac{1}{2} \log(2))=(2log(3)−1+1−21log(3))−(21log(2)−41+21−21log(2))=32log(3)−(12log(2)−14+12−12log(2))= \frac{3}{2} \log(3) - (\frac{1}{2} \log(2) - \frac{1}{4} + \frac{1}{2} - \frac{1}{2} \log(2))=23log(3)−(21log(2)−41+21−21log(2))=32log(3)−(−14+12)= \frac{3}{2} \log(3) - (-\frac{1}{4} + \frac{1}{2})=23log(3)−(−41+21)=32log(3)−14= \frac{3}{2} \log(3) - \frac{1}{4}=23log(3)−413. 最終的な答え32log(3)−14\frac{3}{2}\log(3) - \frac{1}{4}23log(3)−41