関数 $y = \int_x^{x^2} \log t \, dt$ (ただし $x > 0$ )を $x$ について微分せよ。解析学微分積分対数関数2025/4/301. 問題の内容関数 y=∫xx2logt dty = \int_x^{x^2} \log t \, dty=∫xx2logtdt (ただし x>0x > 0x>0 )を xxx について微分せよ。2. 解き方の手順まず、不定積分 ∫logt dt\int \log t \, dt∫logtdt を求める。部分積分を行う。u=logtu = \log tu=logt, dv=dtdv = dtdv=dt とおくと、du=1t dtdu = \frac{1}{t} \, dtdu=t1dt, v=tv = tv=tよって、∫logt dt=tlogt−∫t⋅1t dt=tlogt−∫dt=tlogt−t+C\int \log t \, dt = t \log t - \int t \cdot \frac{1}{t} \, dt = t \log t - \int dt = t \log t - t + C∫logtdt=tlogt−∫t⋅t1dt=tlogt−∫dt=tlogt−t+Cここで、 F(t)=tlogt−tF(t) = t \log t - tF(t)=tlogt−t とおく。すると、y=∫xx2logt dt=F(x2)−F(x)y = \int_x^{x^2} \log t \, dt = F(x^2) - F(x)y=∫xx2logtdt=F(x2)−F(x)=(x2log(x2)−x2)−(xlogx−x)= (x^2 \log (x^2) - x^2) - (x \log x - x)=(x2log(x2)−x2)−(xlogx−x)=x2(2logx)−x2−xlogx+x= x^2 (2 \log x) - x^2 - x \log x + x=x2(2logx)−x2−xlogx+x=2x2logx−x2−xlogx+x= 2x^2 \log x - x^2 - x \log x + x=2x2logx−x2−xlogx+xxxx で微分する。dydx=2(2xlogx+x2⋅1x)−2x−(logx+x⋅1x)+1\frac{dy}{dx} = 2(2x \log x + x^2 \cdot \frac{1}{x}) - 2x - (\log x + x \cdot \frac{1}{x}) + 1dxdy=2(2xlogx+x2⋅x1)−2x−(logx+x⋅x1)+1=4xlogx+2x−2x−logx−1+1= 4x \log x + 2x - 2x - \log x - 1 + 1=4xlogx+2x−2x−logx−1+1=4xlogx−logx= 4x \log x - \log x=4xlogx−logx=(4x−1)logx= (4x - 1) \log x=(4x−1)logx3. 最終的な答えdydx=(4x−1)logx\frac{dy}{dx} = (4x - 1) \log xdxdy=(4x−1)logx