$(3 - \sqrt{-5})^2$ を計算してください。

代数学複素数計算二次式
2025/5/2

1. 問題の内容

(35)2(3 - \sqrt{-5})^2 を計算してください。

2. 解き方の手順

まず、5\sqrt{-5}iiを用いて表現します。5=5i\sqrt{-5} = \sqrt{5}iとなります。
次に、与えられた式に代入して展開します。
(35)2=(35i)2(3 - \sqrt{-5})^2 = (3 - \sqrt{5}i)^2
二項定理 (ab)2=a22ab+b2(a-b)^2 = a^2 - 2ab + b^2 を用いて展開します。
(35i)2=322(3)(5i)+(5i)2(3 - \sqrt{5}i)^2 = 3^2 - 2(3)(\sqrt{5}i) + (\sqrt{5}i)^2
=965i+5i2= 9 - 6\sqrt{5}i + 5i^2
i2=1i^2 = -1 なので、
=965i5= 9 - 6\sqrt{5}i - 5
=465i= 4 - 6\sqrt{5}i

3. 最終的な答え

465i4 - 6\sqrt{5}i

「代数学」の関連問題

与えられた拡大行列に対応する連立一次方程式を解く問題です。拡大行列は次の通りです。 $\begin{pmatrix} 2 & 3 & 5 & 9 \\ 1 & 1 & -1 & 0 \\ 3 & 5 ...

線形代数連立一次方程式行列ガウスの消去法
2025/5/2

与えられた式 $36x^2 - 16y^2$ を因数分解する問題です。

因数分解二項の平方の差
2025/5/2

複素数 $\alpha = 1 - i$, $\beta = 3$, $\gamma = 3 + 5i$ が与えられたとき、以下の問題を解く。 (1) $\frac{\beta - \alpha}{\...

複素数複素数平面偏角絶対値直線垂直
2025/5/2

複素数 $z$ が方程式 $|z+1| = 2|z+2|$ を満たすとき、そのような $z$ 全体はどのような図形になるかを求める問題です。画像には、その解法が途中まで示されており、空欄を埋める必要が...

複素数複素平面絶対値
2025/5/2

与えられた連立一次方程式 $ \begin{cases} x + 2y + 3z = 4 \\ 2x - 3y - z = -1 \\ 2x + y + 3z = 0 \end{cases} $ が解...

連立一次方程式ガウスの消去法解の存在性
2025/5/2

$\alpha = 3 + i$、$\beta = 1 - 2i$のとき、以下の値を計算する。 (i) $\alpha - \beta$ (ii) $\overline{\alpha}\beta$ (...

複素数複素数の計算複素共役絶対値二項展開
2025/5/2

与えられた問題は、複素数の計算、極座標表示、複素数の絶対値に関する問題です。具体的には以下の内容を解く必要があります。 (1) 点 $(-2\sqrt{3}, 2)$ を極座標で表す。 (2) $\a...

複素数複素平面絶対値極座標
2025/5/2

与えられた行列を、操作I、操作II(行基本変形)によって階段行列に変形せよ。 行列は以下の通りです。 $\begin{pmatrix} 1 & 2 & -4 & 3 \\ 2 & 2 & -11 & ...

線形代数行列行基本変形階段行列
2025/5/2

与えられた行列の階数を求めます。行列は以下の通りです。 $\begin{pmatrix} 1 & 2 & -4 & 3 \\ 2 & 2 & -11 & 11 \\ 1 & 0 & -3 & -10 ...

線形代数行列階数行基本変形
2025/5/2

与えられた行列を、行基本変形(操作I、操作II)を用いて階段行列に変形し、その階数を求めます。与えられた行列は以下の通りです。 $\begin{pmatrix} 1 & 2 & -4 & 3 \\ 2...

線形代数行列行基本変形階段行列階数
2025/5/2