10円硬貨1枚と500円硬貨1枚を同時に投げたとき、2枚とも表が出る確率を求める問題です。

確率論・統計学確率硬貨確率の計算
2025/5/3

1. 問題の内容

10円硬貨1枚と500円硬貨1枚を同時に投げたとき、2枚とも表が出る確率を求める問題です。

2. 解き方の手順

* 10円硬貨が表が出る確率は 1/21/2 です。
* 500円硬貨が表が出る確率は 1/21/2 です。
* 2枚とも表が出る確率は、それぞれの硬貨が表になる確率を掛け合わせたものです。
P(2枚とも表)=P(10円硬貨が表)×P(500円硬貨が表)P(\text{2枚とも表}) = P(\text{10円硬貨が表}) \times P(\text{500円硬貨が表})
P(2枚とも表)=12×12=14P(\text{2枚とも表}) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}

3. 最終的な答え

1/4

「確率論・統計学」の関連問題

6人の男子A, B, C, D, E, Fと3人の女子P, Q, Rがいる。男子と女子が少なくとも1人ずつ入るように3人、3人、3人の3つのグループを作る方法は何通りあるか。

組み合わせ場合の数グループ分け
2025/5/4

5人の男子A, B, C, D, Eと3人の女子P, Q, Rがいる。男子、女子が少なくとも1人ずつ入るように4人、4人の2つのグループを作る方法は何通りあるかを求める問題です。

組み合わせ場合の数グループ分け重複
2025/5/4

6人の男子A, B, C, D, E, Fと4人の女子P, Q, R, Sがいる。男子2人, 女子2人の4人のグループを1組、男子2人, 女子1人の3人のグループを2組つくる方法は何通りあるか。

組み合わせ場合の数グループ分け
2025/5/4

4人の男子A, B, C, Dと3人の女子P, Q, Rがいる。男子、女子が少なくとも1人ずつ入るように3つのグループを作る方法は何通りあるかを求める。

組み合わせ場合の数グループ分け
2025/5/4

A, B, C, D, E の 5 人を 3 つのグループに分ける方法は何通りあるか。

組み合わせ場合の数グループ分け
2025/5/4

5人の男子A, B, C, D, Eと4人の女子P, Q, R, Sがいる。男子1人と女子2人のグループ1組と、男子2人と女子1人のグループ1組を作る方法は何通りあるか。

組み合わせ場合の数順列
2025/5/4

5人の男子A, B, C, D, Eと4人の女子P, Q, R, Sがいる。男子、女子が少なくとも1人ずつ入るように4つのグループを作る方法は何通りあるか。

組み合わせグループ分け場合の数包除原理
2025/5/4

6人の男子と3人の女子を、男子と女子が少なくとも1人ずつ入るように、3人、3人、3人の3つのグループに分ける方法は何通りあるか求める問題です。

組み合わせ場合の数重複組合せ
2025/5/4

6人の人を2つのグループに分けるとき、AとBが同じグループになるような分け方は何通りあるか求めます。

組み合わせグループ分け場合の数
2025/5/4

5人の男子A, B, C, D, Eと3人の女子P, Q, Rがいる。男子と女子が少なくとも1人ずつ入るように、4人と4人の2つのグループを作る方法は何通りあるか。

組み合わせ場合の数グループ分け
2025/5/4