関数 $y = \sin(4x-1)\cos(3x)$ の導関数を求める問題です。解析学導関数三角関数微分積の微分公式合成関数の微分2025/5/31. 問題の内容関数 y=sin(4x−1)cos(3x)y = \sin(4x-1)\cos(3x)y=sin(4x−1)cos(3x) の導関数を求める問題です。2. 解き方の手順積の微分公式と合成関数の微分公式を使います。積の微分公式は、(uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′ です。まず、u=sin(4x−1)u = \sin(4x-1)u=sin(4x−1)、v=cos(3x)v = \cos(3x)v=cos(3x) とおきます。u′=ddxsin(4x−1)=cos(4x−1)⋅ddx(4x−1)=cos(4x−1)⋅4=4cos(4x−1)u' = \frac{d}{dx}\sin(4x-1) = \cos(4x-1) \cdot \frac{d}{dx}(4x-1) = \cos(4x-1) \cdot 4 = 4\cos(4x-1)u′=dxdsin(4x−1)=cos(4x−1)⋅dxd(4x−1)=cos(4x−1)⋅4=4cos(4x−1)v′=ddxcos(3x)=−sin(3x)⋅ddx(3x)=−sin(3x)⋅3=−3sin(3x)v' = \frac{d}{dx}\cos(3x) = -\sin(3x) \cdot \frac{d}{dx}(3x) = -\sin(3x) \cdot 3 = -3\sin(3x)v′=dxdcos(3x)=−sin(3x)⋅dxd(3x)=−sin(3x)⋅3=−3sin(3x)よって、y′=u′v+uv′=4cos(4x−1)cos(3x)+sin(4x−1)(−3sin(3x))y' = u'v + uv' = 4\cos(4x-1)\cos(3x) + \sin(4x-1)(-3\sin(3x))y′=u′v+uv′=4cos(4x−1)cos(3x)+sin(4x−1)(−3sin(3x))y′=4cos(4x−1)cos(3x)−3sin(4x−1)sin(3x)y' = 4\cos(4x-1)\cos(3x) - 3\sin(4x-1)\sin(3x)y′=4cos(4x−1)cos(3x)−3sin(4x−1)sin(3x)3. 最終的な答えy′=4cos(4x−1)cos(3x)−3sin(4x−1)sin(3x)y' = 4\cos(4x-1)\cos(3x) - 3\sin(4x-1)\sin(3x)y′=4cos(4x−1)cos(3x)−3sin(4x−1)sin(3x)