袋の中に赤球7個、白球4個、黒球3個が入っている。この袋から同時に6個の球を取り出すとき、赤球が3個、白球が2個、黒球が1個取り出される確率を求める。

確率論・統計学確率組み合わせ場合の数確率計算
2025/5/4

1. 問題の内容

袋の中に赤球7個、白球4個、黒球3個が入っている。この袋から同時に6個の球を取り出すとき、赤球が3個、白球が2個、黒球が1個取り出される確率を求める。

2. 解き方の手順

まず、全ての球の数を確認する。7個の赤球、4個の白球、3個の黒球があるので、合計で 7+4+3=147+4+3=14 個の球がある。
次に、14個の球から6個の球を取り出す場合の総数を計算する。これは組み合わせの問題なので、14C6_{14}C_6 で表される。
14C6=14!6!(146)!=14!6!8!=14×13×12×11×10×96×5×4×3×2×1=3003_{14}C_6 = \frac{14!}{6!(14-6)!} = \frac{14!}{6!8!} = \frac{14 \times 13 \times 12 \times 11 \times 10 \times 9}{6 \times 5 \times 4 \times 3 \times 2 \times 1} = 3003
次に、赤球3個、白球2個、黒球1個を取り出す場合の数を計算する。
赤球3個を取り出す場合の数は、7C3=7!3!4!=7×6×53×2×1=35_{7}C_3 = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35
白球2個を取り出す場合の数は、4C2=4!2!2!=4×32×1=6_{4}C_2 = \frac{4!}{2!2!} = \frac{4 \times 3}{2 \times 1} = 6
黒球1個を取り出す場合の数は、3C1=3!1!2!=3_{3}C_1 = \frac{3!}{1!2!} = 3
したがって、赤球3個、白球2個、黒球1個を取り出す場合の数は、
35×6×3=63035 \times 6 \times 3 = 630
最後に、求める確率は、(赤球3個、白球2個、黒球1個を取り出す場合の数) / (14個の球から6個を取り出す場合の総数) で求められる。
確率は 6303003=30×21143×21=30143\frac{630}{3003} = \frac{30 \times 21}{143 \times 21} = \frac{30}{143}

3. 最終的な答え

30143\frac{30}{143}

「確率論・統計学」の関連問題

サイコロを3回投げて出た目を順番に並べて3桁の整数を作ります。このとき、作られる3桁の整数のうち、9の倍数となるものは何個あるかを求める問題です。

確率整数倍数組み合わせサイコロ
2025/5/4

3つのサイコロを同時に投げ、出た目の最大値を$M$とする。$M = 4$であったとき、少なくとも1つのサイコロに1の目が出る条件付き確率を求める。

条件付き確率サイコロ最大値確率
2025/5/4

あるクラスで、テレビのテニス中継を見た生徒が10人、野球中継を見た生徒が21人、両方を見た生徒が4人である。テニスまたは野球の中継を見た生徒の人数を求める。

集合場合の数和集合ベン図
2025/5/4

さいころを4500回投げたとき、1の目が出る回数が740回以上780回以下である確率を、正規分布を用いて求める問題です。ただし、小数第3位を四捨五入して小数第2位まで求めます。

確率正規分布二項分布期待値分散標準偏差
2025/5/4

杉の木が伝染病にかかる確率が $1/100$ である。伝染病にかかった場合、10本のうち9本が枯れる。杉の木が伝染病で枯れる確率を求める。

確率掛け算事象
2025/5/4

A, B, C, D の4人が1回じゃんけんをする。各人の手の出し方、4人全員の手の出し方、「少なくとも1人がパーを出す」という事象Xの余事象の確率、および事象Xの確率を求める問題です。

確率余事象じゃんけん
2025/5/4

A, B, C, Dの4人が1回じゃんけんをするとき、勝負が決まる(あいこにならない)確率を求めます。

確率じゃんけん組み合わせ事象
2025/5/4

赤球7個と白球5個が入っている袋から、同時に3個の球を取り出すとき、赤球と白球がともに取り出される確率を求めます。

確率組み合わせ場合の数
2025/5/4

袋の中に白球が9個、黒球が5個入っている。この袋から同時に5個の球を取り出すとき、白球が3個、黒球が2個取り出される確率を求めよ。

確率組み合わせ場合の数
2025/5/4

1から9までの数字が書かれた9枚のカードが入った袋から、2枚のカードを取り出す。取り出したカードに書かれた数の積を$X$とする。$X$が10で割り切れる確率を求めよ。

確率組み合わせ場合の数約数・倍数
2025/5/4