袋の中に白球が9個、黒球が5個入っている。この袋から同時に5個の球を取り出すとき、白球が3個、黒球が2個取り出される確率を求めよ。

確率論・統計学確率組み合わせ場合の数
2025/5/4

1. 問題の内容

袋の中に白球が9個、黒球が5個入っている。この袋から同時に5個の球を取り出すとき、白球が3個、黒球が2個取り出される確率を求めよ。

2. 解き方の手順

まず、全事象の数を求める。これは、14個の球から5個を選ぶ組み合わせの数なので、14C5_{14}C_5となる。
14C5=14!5!9!=14×13×12×11×105×4×3×2×1=14×13×11=2002_{14}C_5 = \frac{14!}{5!9!} = \frac{14 \times 13 \times 12 \times 11 \times 10}{5 \times 4 \times 3 \times 2 \times 1} = 14 \times 13 \times 11 = 2002
次に、白球が3個、黒球が2個取り出される場合の数を求める。
白球3個は、9個の白球から3個選ぶ組み合わせの数なので、9C3_{9}C_3となる。
黒球2個は、5個の黒球から2個選ぶ組み合わせの数なので、5C2_{5}C_2となる。
9C3=9!3!6!=9×8×73×2×1=3×4×7=84_{9}C_3 = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84
5C2=5!2!3!=5×42×1=10_{5}C_2 = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10
したがって、白球が3個、黒球が2個取り出される場合の数は、9C3×5C2=84×10=840_{9}C_3 \times _{5}C_2 = 84 \times 10 = 840となる。
求める確率は、白球が3個、黒球が2個取り出される場合の数全事象の数\frac{白球が3個、黒球が2個取り出される場合の数}{全事象の数}であるから、8402002\frac{840}{2002}となる。
これを約分する。
8402002=4201001=60143\frac{840}{2002} = \frac{420}{1001} = \frac{60}{143}

3. 最終的な答え

60143\frac{60}{143}

「確率論・統計学」の関連問題

5つの店A~Eにおける、商品Pと商品Qの1日の販売数が与えられています。商品Pの販売数を変量$x$、商品Qの販売数を変量$y$とし、以下の値を求めます。 (1) $x$の分散と標準偏差 (2) $x$...

統計分散標準偏差共分散相関係数相関
2025/5/4

ある高校の地学部で1年間、月ごとに記録した降水日数に関する問題です。 (1) データの**中央値**、**第1四分位数**、**第3四分位数**を求めます。 (2) 2017年から2020年までの降水...

統計中央値四分位数箱ひげ図データ分析
2025/5/4

サイコロを3回投げて出た目を順番に並べて3桁の整数を作ります。このとき、作られる3桁の整数のうち、9の倍数となるものは何個あるかを求める問題です。

確率整数倍数組み合わせサイコロ
2025/5/4

3つのサイコロを同時に投げ、出た目の最大値を$M$とする。$M = 4$であったとき、少なくとも1つのサイコロに1の目が出る条件付き確率を求める。

条件付き確率サイコロ最大値確率
2025/5/4

あるクラスで、テレビのテニス中継を見た生徒が10人、野球中継を見た生徒が21人、両方を見た生徒が4人である。テニスまたは野球の中継を見た生徒の人数を求める。

集合場合の数和集合ベン図
2025/5/4

さいころを4500回投げたとき、1の目が出る回数が740回以上780回以下である確率を、正規分布を用いて求める問題です。ただし、小数第3位を四捨五入して小数第2位まで求めます。

確率正規分布二項分布期待値分散標準偏差
2025/5/4

杉の木が伝染病にかかる確率が $1/100$ である。伝染病にかかった場合、10本のうち9本が枯れる。杉の木が伝染病で枯れる確率を求める。

確率掛け算事象
2025/5/4

A, B, C, D の4人が1回じゃんけんをする。各人の手の出し方、4人全員の手の出し方、「少なくとも1人がパーを出す」という事象Xの余事象の確率、および事象Xの確率を求める問題です。

確率余事象じゃんけん
2025/5/4

A, B, C, Dの4人が1回じゃんけんをするとき、勝負が決まる(あいこにならない)確率を求めます。

確率じゃんけん組み合わせ事象
2025/5/4

赤球7個と白球5個が入っている袋から、同時に3個の球を取り出すとき、赤球と白球がともに取り出される確率を求めます。

確率組み合わせ場合の数
2025/5/4