与えられた式 $\frac{2}{5}(10x + 25y)$ を簡略化(展開)します。

代数学式の展開分配法則一次式
2025/5/5

1. 問題の内容

与えられた式 25(10x+25y)\frac{2}{5}(10x + 25y) を簡略化(展開)します。

2. 解き方の手順

分配法則を用いて、25\frac{2}{5} を括弧の中の各項に掛けます。
まず 25\frac{2}{5}10x10x に掛けます。
25×10x=205x=4x\frac{2}{5} \times 10x = \frac{20}{5}x = 4x
次に、25\frac{2}{5}25y25y に掛けます。
25×25y=505y=10y\frac{2}{5} \times 25y = \frac{50}{5}y = 10y
したがって、25(10x+25y)\frac{2}{5}(10x + 25y)4x+10y4x + 10y になります。

3. 最終的な答え

4x+10y4x + 10y

「代数学」の関連問題

与えられた式 $(x^2 - 3xy - 2y^2)(x^2 + 3xy + 2y^2)$ を展開し、簡略化すること。

式の展開多項式因数分解代数
2025/5/5

$\alpha + \frac{1}{\alpha} = 3$のとき、以下の式の値を求めよ。 (1) $\alpha^2 + \frac{1}{\alpha^2}$ (2) $\alpha - \fr...

式の計算因数分解有理化累乗
2025/5/5

与えられた連立方程式を解いて、$x$ と $y$ の値を求めます。連立方程式は次の通りです。 $7x - 2(3x - y) = 3$ $4x + 3(x - y) = 4$

連立方程式一次方程式代入法
2025/5/5

画像にある数学の問題のうち、次の2問を解きます。 * 4(1) $(x - y - 1)^2$ を展開せよ。 * 5(4) $a(5a - 3b) + b(3b - 5a)$ を因数分解せよ。

展開因数分解多項式
2025/5/5

与えられた式 $a(5a-3b) + b(3b-5a)$ を展開し、整理して簡単にします。

式の展開因数分解多項式
2025/5/5

与えられた式 $a(x - y) - 9(x - y)$ を因数分解する問題です。

因数分解共通因数式の展開
2025/5/5

与えられた連立方程式を解く問題です。連立方程式は次の通りです。 $\begin{cases} (2x+5y)-3x=7 \\ 8y-5(x-3y)=31 \end{cases}$

連立方程式方程式代入法
2025/5/5

与えられた連立方程式を解いて、$x$ と $y$ の値を求める問題です。 連立方程式は次の通りです。 $\begin{cases} 5x - 3(x + 2y) = 20 \\ x + 2y = 0 ...

連立方程式一次方程式代入法
2025/5/5

与えられた二つの式を因数分解する問題です。 (1) $x^3 + y^3 - 3xy + 1$ (2) $1 - 8x^3 - 18xy - 27y^3$

因数分解多項式三次式
2025/5/5

$a^3 + b^3 = (a+b)^3 - 3ab(a+b)$ を利用して、$a^3 + b^3 + c^3 - 3abc$ を因数分解する問題です。

因数分解多項式三次式
2025/5/5