47(1) の式 $(x^2 + 2x)(x^2 + 2x - 4) + 3$ を因数分解しなさい。 47(2) の式 $(xy+1)(x+1)(y+1)+xy$ を因数分解しなさい。代数学因数分解式の展開2025/5/51. 問題の内容47(1) の式 (x2+2x)(x2+2x−4)+3(x^2 + 2x)(x^2 + 2x - 4) + 3(x2+2x)(x2+2x−4)+3 を因数分解しなさい。47(2) の式 (xy+1)(x+1)(y+1)+xy(xy+1)(x+1)(y+1)+xy(xy+1)(x+1)(y+1)+xy を因数分解しなさい。2. 解き方の手順47(1):x2+2x=Ax^2 + 2x = Ax2+2x=A とおくと、与式はA(A−4)+3=A2−4A+3=(A−1)(A−3)A(A - 4) + 3 = A^2 - 4A + 3 = (A - 1)(A - 3)A(A−4)+3=A2−4A+3=(A−1)(A−3)AAA を元に戻すと、(x2+2x−1)(x2+2x−3)(x^2 + 2x - 1)(x^2 + 2x - 3)(x2+2x−1)(x2+2x−3)(x2+2x−1)(x+3)(x−1)(x^2 + 2x - 1)(x+3)(x-1)(x2+2x−1)(x+3)(x−1)47(2):(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy(xy+1)(x+1)(y+1)+xy = (xy+1)(xy+x+y+1) + xy(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy=(xy)2+x2y+xy2+xy+xy+x+y+1+xy= (xy)^2 + x^2y + xy^2 + xy + xy + x + y + 1 + xy=(xy)2+x2y+xy2+xy+xy+x+y+1+xy=x2y2+x2y+xy2+3xy+x+y+1= x^2y^2 + x^2y + xy^2 + 3xy + x + y + 1=x2y2+x2y+xy2+3xy+x+y+1=xy(xy+x+y+3)+x+y+1= xy(xy + x + y + 3) + x + y + 1=xy(xy+x+y+3)+x+y+1(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy=x2y2+xy(x+y)+xy+x+y+1+xy=x2y2+x2y+xy2+3xy+x+y+1(xy+1)(x+1)(y+1) + xy = (xy+1)(xy+x+y+1) + xy = x^2y^2 + xy(x+y) + xy + x + y + 1 + xy = x^2y^2 + x^2y + xy^2 + 3xy + x+y+1(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy=x2y2+xy(x+y)+xy+x+y+1+xy=x2y2+x2y+xy2+3xy+x+y+1(xy+1)(xy+x+y+1)+xy=x2y2+x2y+xy2+xy+xy+x+y+1+xy=x2y2+xy(x+y)+x+y+1+2xy=x2y2+x2y+xy2+3xy+x+y+1(xy+1)(xy+x+y+1) + xy = x^2y^2 + x^2y + xy^2 + xy + xy + x + y + 1 + xy = x^2y^2 + xy(x+y) + x + y + 1 + 2xy = x^2y^2 + x^2y + xy^2 + 3xy + x+y+1(xy+1)(xy+x+y+1)+xy=x2y2+x2y+xy2+xy+xy+x+y+1+xy=x2y2+xy(x+y)+x+y+1+2xy=x2y2+x2y+xy2+3xy+x+y+1(x+1)(y+1)=xy+x+y+1(x+1)(y+1) = xy+x+y+1(x+1)(y+1)=xy+x+y+1 なので、(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy=(xy)2+(xy)(x+y)+xy+xy+x+y+1+xy=x2y2+x2y+xy2+3xy+x+y+1(xy+1)(x+1)(y+1)+xy = (xy+1)(xy+x+y+1) + xy = (xy)^2 + (xy)(x+y) + xy + xy + x + y + 1 + xy = x^2y^2 + x^2y + xy^2 + 3xy + x + y + 1(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy=(xy)2+(xy)(x+y)+xy+xy+x+y+1+xy=x2y2+x2y+xy2+3xy+x+y+1与式を整理すると、(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy=x2y2+x2y+xy2+xy+xy+x+y+1+xy=x2y2+x2y+xy2+3xy+x+y+1=(xy+x+1)(xy+y+1)(xy+1)(x+1)(y+1)+xy = (xy+1)(xy+x+y+1) + xy = x^2y^2 + x^2y + xy^2 + xy + xy + x + y + 1 + xy = x^2y^2 + x^2y + xy^2 + 3xy + x + y + 1 = (xy+x+1)(xy+y+1)(xy+1)(x+1)(y+1)+xy=(xy+1)(xy+x+y+1)+xy=x2y2+x2y+xy2+xy+xy+x+y+1+xy=x2y2+x2y+xy2+3xy+x+y+1=(xy+x+1)(xy+y+1)3. 最終的な答え47(1): (x2+2x−1)(x+3)(x−1)(x^2 + 2x - 1)(x+3)(x-1)(x2+2x−1)(x+3)(x−1)47(2): (xy+x+1)(xy+y+1)(xy+x+1)(xy+y+1)(xy+x+1)(xy+y+1)