三角形ABCにおいて、DE//BCであるとき、$x$と$y$の値を求めなさい。ここで、線分の長さは図に示されている通りです。

幾何学相似三角形平行線
2025/5/5

1. 問題の内容

三角形ABCにおいて、DE//BCであるとき、xxyyの値を求めなさい。ここで、線分の長さは図に示されている通りです。

2. 解き方の手順

DE//BCより、三角形ADEと三角形ABCは相似です。
相似比を用いて、xxを求めます。
AD/AB=AE/ACAD/AB = AE/AC
10/(10+x)=4/(4+9)10/(10+x) = 4/(4+9)
10/(10+x)=4/1310/(10+x) = 4/13
4(10+x)=10×134(10+x) = 10 \times 13
40+4x=13040 + 4x = 130
4x=904x = 90
x=90/4=45/2=22.5x = 90/4 = 45/2 = 22.5
同様に、相似比を用いて、yyを求めます。
AE/AC=DE/BCAE/AC = DE/BC
4/13=6/(6+y)4/13 = 6/(6+y)
4(6+y)=6×134(6+y) = 6 \times 13
24+4y=7824+4y=78
4y=544y = 54
y=54/4=27/2=13.5y = 54/4 = 27/2 = 13.5

3. 最終的な答え

x=22.5x = 22.5
y=13.5y = 13.5

「幾何学」の関連問題

$y = 2x - 3$ の傾きは $m_1 = 2$ $y = \frac{x}{2} + 3$ の傾きは $m_2 = \frac{1}{2}$

直線角度軌跡傾き
2025/5/5

直角三角形ABCがあり、点Pが点Aを出発し、辺ABを通って点Bへ、さらに辺BCを通って点Cまで、毎秒1cmの速さで移動する。点Pが点Aを出発してからx秒後の三角形APCの面積をy cm²とする。以下の...

三角形面積移動関数グラフ
2025/5/5

$\triangle ABC$ と $\triangle ADE$ は、$\angle BAC = \angle DAE = 90^\circ$ の直角二等辺三角形です。辺 AC と辺 DE の交点を...

相似三角形角度
2025/5/5

直角三角形ABCにおいて、角Aが直角であり、Aから辺BCに下ろした垂線の足をDとします。BD = 8cm、DC = 4cmのとき、ADの長さを求めます。

幾何直角三角形相似三平方の定理辺の比
2025/5/5

三角形ABCと三角形ACDがあり、$\angle ABC = \angle ACD$ であるとき、$x$ の値を求めなさい。ここで、線分ADの長さは4、線分ACの長さは8、線分ABの長さは $x$ で...

相似三角形辺の比
2025/5/5

直角二等辺三角形ABC(AB=BC=10cm, ∠B=90°)が、長方形PQRS(SR=6cm, QR=10cm)に沿って移動するとき、三角形ABCと長方形PQRSの重なる部分の面積y (cm²) を...

図形面積関数直角二等辺三角形長方形台形
2025/5/5

直角三角形ABCがあり、点PはAを秒速3cmでAB上をBまで、点QはAを秒速4cmでAC上をCまで移動します。Aを出発してからx秒後の三角形APQの面積をy $cm^2$とします。 (1) xの変域を...

三角形面積二次関数速さ図形
2025/5/5

一辺が8cmの正方形ABCDにおいて、点Pは頂点Aから辺AB上を、点Qは頂点Dから辺DA上を、それぞれ毎秒1cmの速さで移動する。三角形APQの面積が8cm²になるのは、出発してから何秒後か求める。

面積正方形三角形代数二次方程式
2025/5/5

座標平面上に円 $K: x^2 + y^2 + 6x - 4y - 12 = 0$ がある。点 $A(0, 6)$ における接線を $l$ とする。円 $K$ の中心を $B$ とする。 (1) 点 ...

接線座標平面正方形直線の方程式
2025/5/5

2つのベクトル $\vec{a}$ と $\vec{b}$ があり、$|\vec{a}| = 3$, $|\vec{b}| = \sqrt{2}$, $\vec{a} \cdot \vec{b} = ...

ベクトル内積ベクトルの内分
2025/5/5