$x = \frac{3}{\sqrt{3} + \sqrt{6}}$ , $y = \frac{3}{\sqrt{3} - \sqrt{6}}$ のとき、$x+y$, $xy$, $x^2 + y^2$ の値を求めよ。代数学式の計算有理化平方根2025/5/61. 問題の内容x=33+6x = \frac{3}{\sqrt{3} + \sqrt{6}}x=3+63 , y=33−6y = \frac{3}{\sqrt{3} - \sqrt{6}}y=3−63 のとき、x+yx+yx+y, xyxyxy, x2+y2x^2 + y^2x2+y2 の値を求めよ。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=33+6=3(3−6)(3+6)(3−6)=3(3−6)3−6=3(3−6)−3=−(3−6)=6−3x = \frac{3}{\sqrt{3} + \sqrt{6}} = \frac{3(\sqrt{3} - \sqrt{6})}{(\sqrt{3} + \sqrt{6})(\sqrt{3} - \sqrt{6})} = \frac{3(\sqrt{3} - \sqrt{6})}{3 - 6} = \frac{3(\sqrt{3} - \sqrt{6})}{-3} = -(\sqrt{3} - \sqrt{6}) = \sqrt{6} - \sqrt{3}x=3+63=(3+6)(3−6)3(3−6)=3−63(3−6)=−33(3−6)=−(3−6)=6−3y=33−6=3(3+6)(3−6)(3+6)=3(3+6)3−6=3(3+6)−3=−(3+6)=−3−6y = \frac{3}{\sqrt{3} - \sqrt{6}} = \frac{3(\sqrt{3} + \sqrt{6})}{(\sqrt{3} - \sqrt{6})(\sqrt{3} + \sqrt{6})} = \frac{3(\sqrt{3} + \sqrt{6})}{3 - 6} = \frac{3(\sqrt{3} + \sqrt{6})}{-3} = -(\sqrt{3} + \sqrt{6}) = -\sqrt{3} - \sqrt{6}y=3−63=(3−6)(3+6)3(3+6)=3−63(3+6)=−33(3+6)=−(3+6)=−3−6次に、x+yx+yx+yを計算します。x+y=(6−3)+(−3−6)=−23x+y = (\sqrt{6} - \sqrt{3}) + (-\sqrt{3} - \sqrt{6}) = -2\sqrt{3}x+y=(6−3)+(−3−6)=−23次に、xyxyxyを計算します。xy=(6−3)(−3−6)=−(6−3)(3+6)=−(18+6−3−18)=−(6−3)=−3xy = (\sqrt{6} - \sqrt{3})(-\sqrt{3} - \sqrt{6}) = -(\sqrt{6} - \sqrt{3})(\sqrt{3} + \sqrt{6}) = -(\sqrt{18} + 6 - 3 - \sqrt{18}) = -(6 - 3) = -3xy=(6−3)(−3−6)=−(6−3)(3+6)=−(18+6−3−18)=−(6−3)=−3次に、x2+y2x^2 + y^2x2+y2 を計算します。x2+y2=(x+y)2−2xy=(−23)2−2(−3)=4×3+6=12+6=18x^2 + y^2 = (x+y)^2 - 2xy = (-2\sqrt{3})^2 - 2(-3) = 4 \times 3 + 6 = 12 + 6 = 18x2+y2=(x+y)2−2xy=(−23)2−2(−3)=4×3+6=12+6=183. 最終的な答えx+y=−23x+y = -2\sqrt{3}x+y=−23xy=−3xy = -3xy=−3x2+y2=18x^2 + y^2 = 18x2+y2=18