三角形の3辺の長さ $a = 7$, $b = 5$, $c = 8$ が与えられたとき、角 $A$ を求める問題です。

幾何学三角形余弦定理角度
2025/5/6

1. 問題の内容

三角形の3辺の長さ a=7a = 7, b=5b = 5, c=8c = 8 が与えられたとき、角 AA を求める問題です。

2. 解き方の手順

余弦定理を用いて角 AA を求めます。余弦定理は、三角形の3辺の長さ a,b,ca, b, c と一つの角 AA について、以下の関係が成り立つことを示しています。
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A
この式を cosA\cos A について解くと、
cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}
与えられた値を代入して計算します。
a=7,b=5,c=8a = 7, b = 5, c = 8 なので、
cosA=52+8272258=25+644980=4080=12\cos A = \frac{5^2 + 8^2 - 7^2}{2 \cdot 5 \cdot 8} = \frac{25 + 64 - 49}{80} = \frac{40}{80} = \frac{1}{2}
したがって、
A=arccos(12)A = \arccos \left(\frac{1}{2}\right)
A=60A = 60^\circ

3. 最終的な答え

A=60A = 60^\circ

「幾何学」の関連問題

原点O(0, 0), A(8, 0), B(6, 6), C(2, 4)を頂点とする四角形OABCがある。点Cを通り、対角線OBに平行な直線がx軸と交わる点をDとする。 (1) 直線CDの式を求めよ。...

座標平面直線面積図形平行交点
2025/5/6

四面体OABCにおいて、$\vec{OA}=\vec{a}$、$\vec{OB}=\vec{b}$、$\vec{OC}=\vec{c}$とする。三角形OABの重心をG1とし、線分CG1を3:1に内分す...

ベクトル四面体重心内分点
2025/5/6

三角形の各辺の中点を表す複素数 $\alpha = -3 + i, \beta = 2 + 3i, \gamma = -2i$ が与えられたとき、この三角形の3つの頂点を表す複素数を求めよ。

複素数三角形幾何ベクトル中点
2025/5/6

半径 $r$、中心角 $a^\circ$、弧の長さ $l$、面積 $S$ である扇形において、$S = \frac{1}{2}lr$ が成り立つことを証明する問題です。空欄を埋める形式で証明を進めます...

扇形面積弧の長さ証明図形
2025/5/6

2点 $A(-3, 0)$ と $B(3, 0)$ からの距離の比が $1:3$ である点 $P$ の軌跡を求める問題です。

軌跡2点間の距離
2025/5/6

次の2直線のなす角 $\theta$ を求めよ。ただし、$0 < \theta < \frac{\pi}{2}$ とする。 (2) $y = -x$, $y = (2 + \sqrt{3})x$

角度直線三角関数tan
2025/5/6

問題は、二つの直線 $y = -x$ と $y = (2 + \sqrt{3})x$ の交点を求めることです。

交点直線座標
2025/5/6

半径が $x$ cm の円の面積を $y$ cm$^2$ とするとき、以下の問いに答える問題です。 (1) $y$ を $x$ の式で表す。 (2) 半径が2倍になると、面積は何倍になるか。 (3) ...

面積半径代数関数
2025/5/6

一辺の長さが $x$ cm の立方体について、以下の3つの量を $x$ を用いた式で表しなさい。 (1) すべての辺の長さの和 $y$ cm (2) 表面積 $y$ cm$^2$ (3) 体積 $y$...

立方体表面積体積辺の長さ代数
2025/5/6

直角を挟む2つの辺の長さが $x$ cm である直角二等辺三角形の面積を $y$ cm$^2$ とするとき、$y$ を $x$ の式で表しなさい。

直角二等辺三角形面積二次関数
2025/5/6