与えられた数式 $x^2y \div 2xy \times (-10y)$ を計算し、最も簡単な形にしてください。

代数学式の計算代数分数
2025/3/19

1. 問題の内容

与えられた数式 x2y÷2xy×(10y)x^2y \div 2xy \times (-10y) を計算し、最も簡単な形にしてください。

2. 解き方の手順

まず、除算を乗算に変換します。
x2y÷2xyx^2y \div 2xyx2y2xy\frac{x^2y}{2xy} と書き換えることができます。
次に、この分数と 10y-10y を掛けます。
x2y2xy×(10y)\frac{x^2y}{2xy} \times (-10y)
次に、分数を簡略化します。
x2yx^2yxyxy で割ると x2yxy=x\frac{x^2y}{xy} = x となります。
したがって、式は次のようになります。
x2×(10y)\frac{x}{2} \times (-10y)
最後に、x2\frac{x}{2}10y-10y を掛けます。
x2×(10y)=10xy2\frac{x}{2} \times (-10y) = \frac{-10xy}{2}
10xy2=5xy\frac{-10xy}{2} = -5xy

3. 最終的な答え

5xy-5xy

「代数学」の関連問題

$A = 3x^2 + 4x - 1$ と $B = x^2 - 2x - 5$ が与えられたとき、$A + B$ を計算し、$A + B = 4x^2 + \boxed{ア} x - \boxed{...

多項式計算加法文字式
2025/4/20

問題は、式 $2(mx + 1)(x + \frac{1}{m})$ を展開することです。

展開二次式文字式
2025/4/20

与えられた整式 $5a^3 - 4 + a^2 - 7a^2 + 5a + 9$ を整理し、$Aa^3 - Ba^2 + 5a + C$ の形にすること。ここで、$A, B, C$ に当てはまる数を求...

整式多項式同類項整理
2025/4/20

単項式 $-4x^3y^2$ について、$x$に着目したときの係数と次数を求めよ。

単項式係数次数文字式
2025/4/20

2点$(-3, -18)$, $(2, 2)$を通り、$y$軸と$(0, 6)$で交わる2次関数を求める問題です。つまり、$y = ax^2 + bx + c$の形で表される2次関数で、上記の3点を通...

二次関数連立方程式座標グラフ
2025/4/20

頂点が(2, 4)で、点(5, -5)を通る2次関数がある。この2次関数において、$x=0$のときの$y$の値を求める。

二次関数頂点代入関数の値
2025/4/20

頂点が (3, 2) で、点 (4, 8) を通る2次関数がある。この2次関数において、$x = 6$ のときの $y$ の値を求める。

二次関数頂点二次関数の決定関数の値
2025/4/20

頂点が $(8, -12)$ で点 $(10, -6)$ を通る2次関数がある。この2次関数において、$x=4$ のときの $y$ の値を求める。

二次関数放物線頂点関数の決定
2025/4/20

2点$(-3, -22)$、$(2, -2)$を通り、$y$軸と$(0, -4)$で交わる2次関数を求める問題です。

二次関数2次関数グラフ方程式連立方程式
2025/4/20

軸が $x = -3$ であり、2点 $(0, -6)$ と $(3, -15)$ を通る2次関数がある。$x$ の値が $6$ のときの $y$ の値を求める。

二次関数2次関数放物線頂点方程式
2025/4/20