$x = \frac{\sqrt{6} + \sqrt{2}}{2}$ のとき、以下の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$

代数学式の計算有理化平方根数式の値
2025/5/6

1. 問題の内容

x=6+22x = \frac{\sqrt{6} + \sqrt{2}}{2} のとき、以下の式の値を求めよ。
(1) x+1xx + \frac{1}{x}
(2) x2+1x2x^2 + \frac{1}{x^2}

2. 解き方の手順

(1) x+1xx + \frac{1}{x} を求める。
まず、1x\frac{1}{x} を計算する。
1x=26+2\frac{1}{x} = \frac{2}{\sqrt{6} + \sqrt{2}}
分母を有理化するために、分母の共役 62\sqrt{6} - \sqrt{2} を分母と分子にかける。
1x=2(62)(6+2)(62)=2(62)62=2(62)4=622\frac{1}{x} = \frac{2(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{2(\sqrt{6} - \sqrt{2})}{6 - 2} = \frac{2(\sqrt{6} - \sqrt{2})}{4} = \frac{\sqrt{6} - \sqrt{2}}{2}
したがって、
x+1x=6+22+622=6+2+622=262=6x + \frac{1}{x} = \frac{\sqrt{6} + \sqrt{2}}{2} + \frac{\sqrt{6} - \sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2} + \sqrt{6} - \sqrt{2}}{2} = \frac{2\sqrt{6}}{2} = \sqrt{6}
(2) x2+1x2x^2 + \frac{1}{x^2} を求める。
x2+1x2x^2 + \frac{1}{x^2}(x+1x)22(x + \frac{1}{x})^2 - 2 と変形できる。
(1)の結果より、x+1x=6x + \frac{1}{x} = \sqrt{6} なので、
x2+1x2=(6)22=62=4x^2 + \frac{1}{x^2} = (\sqrt{6})^2 - 2 = 6 - 2 = 4

3. 最終的な答え

(1) x+1x=6x + \frac{1}{x} = \sqrt{6}
(2) x2+1x2=4x^2 + \frac{1}{x^2} = 4

「代数学」の関連問題

与えられた式 $(4x - 3)(x + 9)$ を展開して簡単にしてください。

展開因数分解多項式
2025/5/6

与えられた式 $ (-4mn^2)^n \div (-6mn) $ を簡略化します。

式の簡略化累乗分数文字式
2025/5/6

与えられた2次式 $3x^2 + 8x + 4$ を因数分解します。

因数分解二次式
2025/5/6

$\frac{2}{3}xy$ を $\frac{4}{3}x^2y^2$ で割る問題です。数式で表すと以下のようになります。 $\frac{2}{3}xy \div \frac{4}{3}x^2y^...

分数代数式除算約分
2025/5/6

2次不等式 $m(x+2) > -(x^2 + 2x + 1)$ の解がすべての実数となるように、定数 $m$ の値の範囲を求めます。

二次不等式判別式不等式の解二次関数
2025/5/6

与えられた2次方程式 $4x^2 + 9x + 5 = 0$ を解く。

二次方程式因数分解方程式の解
2025/5/6

式 $(5x+3)^2 - 5x - 3$ を展開し、整理して簡単にします。

展開因数分解二次式
2025/5/6

二次方程式 $x^2 - mx + 2m + 5 = 0$ について、以下の問いに答えます。 (1) 異なる2つの実数解を持つときの $m$ の範囲を求めます。 (2) 3より大きい解と3より小さい解...

二次方程式判別式解の範囲
2025/5/6

与えられた式 $(x + 1)(x + 4) - (x - 3)^2$ を展開し、簡略化して下さい。

式の展開多項式簡略化
2025/5/6

はい、承知いたしました。画像に写っている問題のうち、(9)から(17)まで、一つずつ解いていきます。

展開多項式の展開分配法則
2025/5/6