$x = \frac{3}{\sqrt{3}+\sqrt{6}}$、 $y = \frac{3}{\sqrt{3}-\sqrt{6}}$ のとき、$x+y$、$xy$、$x^2+y^2$ の値を求める問題です。代数学式の計算分母の有理化平方根式の値2025/5/61. 問題の内容x=33+6x = \frac{3}{\sqrt{3}+\sqrt{6}}x=3+63、 y=33−6y = \frac{3}{\sqrt{3}-\sqrt{6}}y=3−63 のとき、x+yx+yx+y、xyxyxy、x2+y2x^2+y^2x2+y2 の値を求める問題です。2. 解き方の手順(1) xxx と yyy の分母を有理化します。x=33+6=3(3−6)(3+6)(3−6)=3(3−6)3−6=3(3−6)−3=−(3−6)=6−3x = \frac{3}{\sqrt{3}+\sqrt{6}} = \frac{3(\sqrt{3}-\sqrt{6})}{(\sqrt{3}+\sqrt{6})(\sqrt{3}-\sqrt{6})} = \frac{3(\sqrt{3}-\sqrt{6})}{3-6} = \frac{3(\sqrt{3}-\sqrt{6})}{-3} = -(\sqrt{3}-\sqrt{6}) = \sqrt{6}-\sqrt{3}x=3+63=(3+6)(3−6)3(3−6)=3−63(3−6)=−33(3−6)=−(3−6)=6−3y=33−6=3(3+6)(3−6)(3+6)=3(3+6)3−6=3(3+6)−3=−(3+6)=−3−6y = \frac{3}{\sqrt{3}-\sqrt{6}} = \frac{3(\sqrt{3}+\sqrt{6})}{(\sqrt{3}-\sqrt{6})(\sqrt{3}+\sqrt{6})} = \frac{3(\sqrt{3}+\sqrt{6})}{3-6} = \frac{3(\sqrt{3}+\sqrt{6})}{-3} = -(\sqrt{3}+\sqrt{6}) = -\sqrt{3}-\sqrt{6}y=3−63=(3−6)(3+6)3(3+6)=3−63(3+6)=−33(3+6)=−(3+6)=−3−6(2) x+yx+yx+y を計算します。x+y=(6−3)+(−3−6)=6−3−3−6=−23x+y = (\sqrt{6}-\sqrt{3})+(-\sqrt{3}-\sqrt{6}) = \sqrt{6}-\sqrt{3}-\sqrt{3}-\sqrt{6} = -2\sqrt{3}x+y=(6−3)+(−3−6)=6−3−3−6=−23(3) xyxyxy を計算します。xy=(6−3)(−6−3)=−(6−3)(6+3)=−(6−3)=−3xy = (\sqrt{6}-\sqrt{3})(-\sqrt{6}-\sqrt{3}) = -(\sqrt{6}-\sqrt{3})(\sqrt{6}+\sqrt{3}) = -(6-3) = -3xy=(6−3)(−6−3)=−(6−3)(6+3)=−(6−3)=−3(4) x2+y2x^2+y^2x2+y2 を計算します。x2+y2=(x+y)2−2xy=(−23)2−2(−3)=4⋅3+6=12+6=18x^2+y^2 = (x+y)^2 - 2xy = (-2\sqrt{3})^2 - 2(-3) = 4 \cdot 3 + 6 = 12+6 = 18x2+y2=(x+y)2−2xy=(−23)2−2(−3)=4⋅3+6=12+6=183. 最終的な答えx+y=−23x+y = -2\sqrt{3}x+y=−23xy=−3xy = -3xy=−3x2+y2=18x^2+y^2 = 18x2+y2=18