点A(-3, 2)に関して、点P(0, -4)と対称な点Qの座標を求める問題です。

幾何学座標対称点中点
2025/5/7

1. 問題の内容

点A(-3, 2)に関して、点P(0, -4)と対称な点Qの座標を求める問題です。

2. 解き方の手順

点Aが線分PQの中点になることを利用します。点Qの座標を(x, y)とすると、中点の座標は
(x+02,y+(4)2)(\frac{x+0}{2}, \frac{y+(-4)}{2})
と表されます。この中点が点A(-3, 2)と一致するので、以下の連立方程式が成り立ちます。
x+02=3\frac{x+0}{2} = -3
y42=2\frac{y-4}{2} = 2
これらの式をそれぞれ解きます。
一つ目の式から、
x=6x = -6
二つ目の式から、
y4=4y - 4 = 4
y=8y = 8
したがって、点Qの座標は(-6, 8)です。

3. 最終的な答え

点Qの座標は (-6, 8) です。

「幾何学」の関連問題

(1) 半径15cm、中心角48°のおうぎ形の弧の長さと面積を求める。 (2) 与えられた四角柱の表面積を求める。 (3) 底面の半径が5cm、高さが15cmの円錐の体積を求める。

おうぎ形表面積体積円錐四角柱図形
2025/5/7

図1のように、AB=BC=6cm, AF=CD=2cmの図形ABCDEFと、1辺の長さが6cmの正方形GHIJが直線l上に並んでいて、点Cと点Hは重なっている。図形ABCDEFを、図1の状態から直線l...

図形面積長方形正方形移動相似
2025/5/7

(1) $y$軸上に中心があり、2点 $(-2, 1)$, $(4, 3)$ を通る円の方程式を求める。 (2) 点 $(2, 1)$ を中心とし、直線 $4x - 3y + 2 = 0$ に接する円...

円の方程式座標平面距離
2025/5/7

問題は、以下の2つの円の方程式を求めることです。 (1) 中心が$(-1, 3)$で半径が2の円。 (2) 中心が原点で半径が5の円。

円の方程式座標平面
2025/5/7

画像の問題は、以下の内容です。 (1) ある条件を満たす点全体のつくる図形は何と呼ばれるか。 (2) $x, y$ についての不等式を満たす点 $(x, y)$ の集まりは何と呼ばれるか。 (3) $...

軌跡領域不等式
2025/5/7

底面の半径が4cm、母線の長さが6cmの円錐の展開図が与えられている。 (1) 側面のおうぎ形の中心角を求める。 (2) 円錐の表面積を求める。

円錐展開図表面積おうぎ形体積
2025/5/7

右図のような三角錐ABCDにおいて、$\angle BAC = \angle CAD = 90^\circ$ である。辺と面が垂直である組み合わせをア~エの中から一つ選び、その符号を答えよ。 ア 辺A...

空間図形三角錐垂直角度
2025/5/7

与えられた図において、$\triangle ABC$と$\triangle DEF$があり、$AC=DF$, $BC=EF$, $\angle ACB = \angle DFE$である。このとき、$\...

合同三角形証明幾何学
2025/5/7

直線 $l$ と $m$ が平行 ($l // m$) であるとき、図に示された角度から角度 $x$ の大きさを求める問題です。

平行線角度三角形錯角
2025/5/7

$\tan 150^\circ$ を $\frac{\sin(90^\circ + 60^\circ)}{\cos(90^\circ + 60^\circ)}$ で表したとき、この値を求めよ。

三角関数角度tansincos三角比
2025/5/7