右図のような三角錐ABCDにおいて、$\angle BAC = \angle CAD = 90^\circ$ である。辺と面が垂直である組み合わせをア~エの中から一つ選び、その符号を答えよ。 ア 辺ABと面ABC イ 辺ABと面ACD ウ 辺ACと面ABD エ 辺ADと面ABC

幾何学空間図形三角錐垂直角度
2025/5/7

1. 問題の内容

右図のような三角錐ABCDにおいて、BAC=CAD=90\angle BAC = \angle CAD = 90^\circ である。辺と面が垂直である組み合わせをア~エの中から一つ選び、その符号を答えよ。
ア 辺ABと面ABC
イ 辺ABと面ACD
ウ 辺ACと面ABD
エ 辺ADと面ABC

2. 解き方の手順

面ABC, ABD, ACDは三角形である。辺と面が垂直であるとは、その辺が面上の任意の直線と垂直であることを意味する。
* ア:辺ABと面ABC
面ABCにおいて、辺ABは面ABCに含まれているので、垂直ではない。
* イ:辺ABと面ACD
BAC=CAD=90\angle BAC = \angle CAD = 90^\circなので、ABはACと垂直、ADと垂直。よって、ABは面ACDと垂直。
* ウ:辺ACと面ABD
BAC=90\angle BAC = 90^\circなので、ACはABと垂直。しかし、ACがADと垂直とは限らない。したがって、ACは面ABDと垂直とは限らない。
* エ:辺ADと面ABC
CAD=90\angle CAD = 90^\circなので、ADはACと垂直。しかし、ADがABと垂直とは限らない。したがって、ADは面ABCと垂直とは限らない。
したがって、辺ABと面ACDが垂直である。

3. 最終的な答え

「幾何学」の関連問題

直線 $l: y = 2x - 3$ と点 $A(0, 2)$ が与えられている。直線 $l$ に関して点 $A$ と対称な点 $P$ の座標を求める。

座標平面対称点直線傾き垂直連立方程式
2025/5/7

円に内接する四角形ABCDがあり、$AB = \sqrt{2}$, $BC = 4$, $CD = 3\sqrt{2}$, $DA = 2$である。 対角線BDの長さを求め、四角形ABCDの面積を求め...

四角形トレミーの定理余弦定理面積
2025/5/7

一辺の長さが1の正四面体の体積を求めます。

正四面体体積三平方の定理正三角形
2025/5/7

点$(4, 2)$から円$x^2 + y^2 = 10$に引いた2つの接線の接点を$A$, $B$とする。 (1) 2点$A, B$の座標を求める。 (2) 直線$AB$の方程式を求める。

接線座標方程式極線
2025/5/7

直線 $y = x + 2$ が円 $x^2 + y^2 = 5$ によって切り取られる弦の長さを求める問題です。

直線弦の長さ座標
2025/5/7

周の長さが1の正$n$角形($n \ge 3$)がある。その面積を$S_n$とする。 (1) この正$n$角形の外接円の半径を$n$の式で表す。 (2) $S_n$を$n$の式で表し、$\lim_{n...

正多角形面積極限三角関数
2025/5/7

円 $C: x^2 + y^2 - 2mx - 2m - 2 = 0$ について、以下の問いに答える問題です。 (1) 円 $C$ が $m$ の値によらず通る2定点を求める。 (2)...

方程式接線半径面積座標
2025/5/7

点Sが線分ORの延長上にあるとき、ベクトル$\overrightarrow{OR}$を$\overrightarrow{OS}$の実数倍で表現できるかどうかを問う問題です。具体的には、$\overri...

ベクトル線分延長平行実数倍
2025/5/7

点Sが線分ORの延長上にあるとき、ベクトルOSはベクトルORのスカラー倍で表せる、つまり $\vec{OS} = m\vec{OR}$ (ただし、$m$ は実数)と表せることを説明する問題です。

ベクトル線分スカラー倍延長
2025/5/7

三角形OABにおいて、辺OA上に点PをOP:PA=3:2、辺OB上に点QをOQ:QB=5:1となるようにとる。AQとBPの交点をRとし、ORの延長とABの交点をSとするとき、以下の問いに答える。 (1...

ベクトル空間ベクトル内分線分の比
2025/5/7