長方形ABCDがあり、AB=4cm, BC=8cmである。対角線BDを折り目として折ったとき、AFの長さを求める問題です。

幾何学長方形折り返し相似二等辺三角形図形
2025/3/20

1. 問題の内容

長方形ABCDがあり、AB=4cm, BC=8cmである。対角線BDを折り目として折ったとき、AFの長さを求める問題です。

2. 解き方の手順

まず、長方形ABCDにおいて、AD = BC = 8cm、AB = CD = 4cmです。また、折り返した図形なので、∠EBD = ∠DBCです。
次に、ADとBCは平行なので、∠ADB = ∠DBCです。したがって、∠EBD = ∠ADBとなり、三角形ABFは二等辺三角形であることがわかります。
ゆえに、AB = AFです。
したがって、AF = 4cmとなります。

3. 最終的な答え

AF = 4 cm

「幾何学」の関連問題

図に示された点A, B, C, D, E, Fの座標を求める問題です。

座標座標平面点の座標
2025/7/26

実数 $k$ に対して、双曲線 $x^2 - y^2 = 1$ と直線 $2x - y + k = 0$ が異なる2点P, Qで交わるとき、線分PQの中点をRとする。以下の問いに答えよ。 (1) $k...

双曲線直線軌跡判別式解と係数の関係
2025/7/26

正四角錐の底面の1辺の長さを3倍にし、高さを半分にしたとき、体積が元の正四角錐の体積の何倍になるかを求める問題です。

体積正四角錐相似
2025/7/26

底面の1辺の長さが $a$ cm、高さが $h$ cmの正四角錐の体積 $V$ cm$^3$ を、$a$ と $h$ を使った式で表す問題です。

体積正四角錐図形
2025/7/26

$xy$平面上の双曲線 $9x^2 - y^2 + 2y - 10 = 0$ の焦点の座標を求める問題です。

双曲線焦点座標二次曲線
2025/7/26

台形ABCDにおいて、BC=9cm、CD=6cm、DA=5cm、∠C=∠D=90°である。点Pは毎秒1cmの速さで点Aを出発し、台形の辺上を点Dを通って点Cまで動く。点Pが点Aを出発してからx秒後の△...

台形面積図形方程式動点
2025/7/26

円の内部に点Aがある。円周上の点のうち、点Aとの距離が最も短い点Pを定規とコンパスを使って作図し、点Pに文字Pを書き入れる。作図に用いた線は消さない。

作図最短距離幾何学的証明
2025/7/26

2つの関数 $y = \frac{1}{2}x + 3$ (これを式①とします) と $y = -2x - 2$ (これを式②とします) のグラフが点Aで交わっています。式①と式②のグラフと $y$ ...

一次関数グラフ交点面積座標
2025/7/26

xy平面上に3点O(0, 0), A(-3, -4), B(12, 5)を頂点とする△OABがある。∠AOBの二等分線と辺ABとの交点をCとするとき、点Cの座標を求める。

座標幾何角の二等分線内分点三角形
2025/7/26

正多角形の1つの外角の大きさが45°であるとき、その正多角形の内角の和を求める問題です。

多角形内角外角正多角形角度
2025/7/26