二次方程式 $(x-3)^2 = 4$ を解く問題です。

代数学二次方程式平方根方程式の解
2025/5/7

1. 問題の内容

二次方程式 (x3)2=4(x-3)^2 = 4 を解く問題です。

2. 解き方の手順

与えられた方程式は (x3)2=4(x-3)^2 = 4 です。
まず、両辺の平方根を取ります。
(x3)2=±4\sqrt{(x-3)^2} = \pm\sqrt{4}
x3=±2x-3 = \pm 2
したがって、
x=3±2x = 3 \pm 2
これより、xx の値は2つ求まります。
x=3+2=5x = 3 + 2 = 5
x=32=1x = 3 - 2 = 1

3. 最終的な答え

x=1,5x = 1, 5

「代数学」の関連問題

問題は、$x^3 + 27$ を因数分解することです。

因数分解立方和多項式
2025/5/8

$(-2n^3)^5$ を計算して簡単にします。

指数法則式の計算べき乗
2025/5/7

aは正の定数とする。関数 $y = -x^2 + 2x + 1$ ($0 \le x \le a$)の最大値を求めよ。

二次関数最大値平方完成場合分け
2025/5/7

2次関数 $y = ax^2 + bx + c$ のグラフが与えられたとき、次の値の符号を判定する。 (1) $a$ (2) $b$ (3) $c$ (4) $a + b + c$ (5) $4a +...

二次関数グラフ符号判別式
2025/5/7

$x = -1 + \sqrt{2}i$ のとき、以下の2つの問題に答える。 (1) $x^2 + 2x + 3 = 0$ であることを示す。 (2) (1)の結果を用いて、$x^3 + 6x^2 +...

複素数二次方程式式の計算多項式の除法
2025/5/7

$x = -1 + \sqrt{2}i$ のとき、次の問いに答える。 (1) $x^2 + 2x + 3 = 0$ であることを示す。

複素数二次方程式式の計算
2025/5/7

2次方程式 $x^2 - 2(m-1)x + m + 5 = 0$ が異なる2つの解を持ち、その解がともに1より大きいとき、定数 $m$ の値の範囲を求めよ。

二次方程式解の範囲判別式二次関数
2025/5/7

## 問題 (9) の内容

因数分解二次式
2025/5/7

画像に写っている2つの多項式を因数分解する問題です。 (7) $2x^2 - 7ax + 6a^2$ (8) $3x^2 - 11ax - 4a^2$

因数分解多項式
2025/5/7

与えられた二次式 $6y^2 - 5y - 4$ を因数分解してください。

因数分解二次式たすき掛け
2025/5/7