次の式を展開せよ。 $(x+y)^3(x-y)^3$代数学式の展開因数分解二項定理2025/5/7## (1)の問題1. 問題の内容次の式を展開せよ。(x+y)3(x−y)3(x+y)^3(x-y)^3(x+y)3(x−y)32. 解き方の手順まず、(x+y)(x−y)(x+y)(x-y)(x+y)(x−y) を計算すると、x2−y2x^2 - y^2x2−y2 になります。したがって、(x+y)3(x−y)3=[(x+y)(x−y)]3=(x2−y2)3(x+y)^3(x-y)^3 = [(x+y)(x-y)]^3 = (x^2-y^2)^3(x+y)3(x−y)3=[(x+y)(x−y)]3=(x2−y2)3となります。次に、(x2−y2)3(x^2-y^2)^3(x2−y2)3 を展開します。二項定理または (a−b)3=a3−3a2b+3ab2−b3(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(a−b)3=a3−3a2b+3ab2−b3 を使います。(x2−y2)3=(x2)3−3(x2)2(y2)+3(x2)(y2)2−(y2)3(x^2-y^2)^3 = (x^2)^3 - 3(x^2)^2(y^2) + 3(x^2)(y^2)^2 - (y^2)^3(x2−y2)3=(x2)3−3(x2)2(y2)+3(x2)(y2)2−(y2)3=x6−3x4y2+3x2y4−y6= x^6 - 3x^4y^2 + 3x^2y^4 - y^6=x6−3x4y2+3x2y4−y63. 最終的な答えx6−3x4y2+3x2y4−y6x^6 - 3x^4y^2 + 3x^2y^4 - y^6x6−3x4y2+3x2y4−y6## (2)の問題1. 問題の内容次の式を展開せよ。(a+b)2(a2−ab+b2)2(a+b)^2(a^2-ab+b^2)^2(a+b)2(a2−ab+b2)22. 解き方の手順まず、(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2次に、(a2−ab+b2)2(a^2-ab+b^2)^2(a2−ab+b2)2 を計算します。(a2−ab+b2)2=(a2−ab+b2)(a2−ab+b2)(a^2-ab+b^2)^2 = (a^2-ab+b^2)(a^2-ab+b^2)(a2−ab+b2)2=(a2−ab+b2)(a2−ab+b2)=a4−a3b+a2b2−a3b+a2b2−ab3+a2b2−ab3+b4= a^4 - a^3b + a^2b^2 - a^3b + a^2b^2 - ab^3 + a^2b^2 - ab^3 + b^4=a4−a3b+a2b2−a3b+a2b2−ab3+a2b2−ab3+b4=a4−2a3b+3a2b2−2ab3+b4= a^4 - 2a^3b + 3a^2b^2 - 2ab^3 + b^4=a4−2a3b+3a2b2−2ab3+b4よって、(a+b)2(a2−ab+b2)2=(a2+2ab+b2)(a4−2a3b+3a2b2−2ab3+b4)(a+b)^2(a^2-ab+b^2)^2 = (a^2+2ab+b^2)(a^4-2a^3b+3a^2b^2-2ab^3+b^4)(a+b)2(a2−ab+b2)2=(a2+2ab+b2)(a4−2a3b+3a2b2−2ab3+b4)=a6−2a5b+3a4b2−2a3b3+a2b4+2a5b−4a4b2+6a3b3−4a2b4+2ab5+a4b2−2a3b3+3a2b4−2ab5+b6= a^6 - 2a^5b + 3a^4b^2 - 2a^3b^3 + a^2b^4 + 2a^5b - 4a^4b^2 + 6a^3b^3 - 4a^2b^4 + 2ab^5 + a^4b^2 - 2a^3b^3 + 3a^2b^4 - 2ab^5 + b^6=a6−2a5b+3a4b2−2a3b3+a2b4+2a5b−4a4b2+6a3b3−4a2b4+2ab5+a4b2−2a3b3+3a2b4−2ab5+b6=a6+(−2a5b+2a5b)+(3a4b2−4a4b2+a4b2)+(−2a3b3+6a3b3−2a3b3)+(a2b4−4a2b4+3a2b4)+(2ab5−2ab5)+b6= a^6 + ( -2a^5b + 2a^5b) + (3a^4b^2 - 4a^4b^2 + a^4b^2) + (-2a^3b^3 + 6a^3b^3 - 2a^3b^3) + (a^2b^4 - 4a^2b^4 + 3a^2b^4) + (2ab^5 - 2ab^5) + b^6=a6+(−2a5b+2a5b)+(3a4b2−4a4b2+a4b2)+(−2a3b3+6a3b3−2a3b3)+(a2b4−4a2b4+3a2b4)+(2ab5−2ab5)+b6=a6+2a3b3+b6= a^6 + 2a^3b^3 + b^6=a6+2a3b3+b63. 最終的な答えa6+2a3b3+b6a^6 + 2a^3b^3 + b^6a6+2a3b3+b6## (3)の問題1. 問題の内容次の式を展開せよ。(x+y)(x−y)(x2+xy+y2)(x2−xy+y2)(x+y)(x-y)(x^2+xy+y^2)(x^2-xy+y^2)(x+y)(x−y)(x2+xy+y2)(x2−xy+y2)2. 解き方の手順まず、(x+y)(x−y)=x2−y2(x+y)(x-y)=x^2-y^2(x+y)(x−y)=x2−y2。次に、(x2+xy+y2)(x2−xy+y2)(x^2+xy+y^2)(x^2-xy+y^2)(x2+xy+y2)(x2−xy+y2)を展開する。(x2+y2+xy)(x2+y2−xy)=(x2+y2)2−(xy)2(x^2+y^2+xy)(x^2+y^2-xy) = (x^2+y^2)^2 - (xy)^2(x2+y2+xy)(x2+y2−xy)=(x2+y2)2−(xy)2=x4+2x2y2+y4−x2y2= x^4 + 2x^2y^2 + y^4 - x^2y^2=x4+2x2y2+y4−x2y2=x4+x2y2+y4= x^4 + x^2y^2 + y^4=x4+x2y2+y4よって、(x+y)(x−y)(x2+xy+y2)(x2−xy+y2)=(x2−y2)(x4+x2y2+y4)(x+y)(x-y)(x^2+xy+y^2)(x^2-xy+y^2) = (x^2-y^2)(x^4+x^2y^2+y^4)(x+y)(x−y)(x2+xy+y2)(x2−xy+y2)=(x2−y2)(x4+x2y2+y4)=x6+x4y2+x2y4−x4y2−x2y4−y6= x^6 + x^4y^2 + x^2y^4 - x^4y^2 - x^2y^4 - y^6=x6+x4y2+x2y4−x4y2−x2y4−y6=x6−y6= x^6 - y^6=x6−y63. 最終的な答えx6−y6x^6 - y^6x6−y6