$x = \frac{2}{\sqrt{5} + \sqrt{3}}$、 $y = \frac{2}{\sqrt{5} - \sqrt{3}}$のとき、以下の式の値を求めよ。 (1) $x + y$ (2) $xy$ (3) $x^2 + y^2$ (4) $x^3 + y^3$ (5) $x^3y - x^2y^2 + xy^3$

代数学式の計算有理化平方根因数分解展開
2025/5/8

1. 問題の内容

x=25+3x = \frac{2}{\sqrt{5} + \sqrt{3}}y=253y = \frac{2}{\sqrt{5} - \sqrt{3}}のとき、以下の式の値を求めよ。
(1) x+yx + y
(2) xyxy
(3) x2+y2x^2 + y^2
(4) x3+y3x^3 + y^3
(5) x3yx2y2+xy3x^3y - x^2y^2 + xy^3

2. 解き方の手順

まず、xxyyをそれぞれ有理化する。
x=25+3=2(53)(5+3)(53)=2(53)53=2(53)2=53x = \frac{2}{\sqrt{5} + \sqrt{3}} = \frac{2(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} = \frac{2(\sqrt{5} - \sqrt{3})}{5 - 3} = \frac{2(\sqrt{5} - \sqrt{3})}{2} = \sqrt{5} - \sqrt{3}
y=253=2(5+3)(53)(5+3)=2(5+3)53=2(5+3)2=5+3y = \frac{2}{\sqrt{5} - \sqrt{3}} = \frac{2(\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} = \frac{2(\sqrt{5} + \sqrt{3})}{5 - 3} = \frac{2(\sqrt{5} + \sqrt{3})}{2} = \sqrt{5} + \sqrt{3}
(1) x+y=(53)+(5+3)=25x + y = (\sqrt{5} - \sqrt{3}) + (\sqrt{5} + \sqrt{3}) = 2\sqrt{5}
(2) xy=(53)(5+3)=53=2xy = (\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3}) = 5 - 3 = 2
(3) x2+y2=(x+y)22xy=(25)22(2)=4(5)4=204=16x^2 + y^2 = (x + y)^2 - 2xy = (2\sqrt{5})^2 - 2(2) = 4(5) - 4 = 20 - 4 = 16
(4) x3+y3=(x+y)(x2xy+y2)=(x+y)((x+y)23xy)=(25)((25)23(2))=(25)(206)=(25)(14)=285x^3 + y^3 = (x + y)(x^2 - xy + y^2) = (x + y)((x + y)^2 - 3xy) = (2\sqrt{5})((2\sqrt{5})^2 - 3(2)) = (2\sqrt{5})(20 - 6) = (2\sqrt{5})(14) = 28\sqrt{5}
(5) x3yx2y2+xy3=xy(x2xy+y2)=xy((x+y)23xy)=2((25)23(2))=2(206)=2(14)=28x^3y - x^2y^2 + xy^3 = xy(x^2 - xy + y^2) = xy((x+y)^2 - 3xy) = 2((2\sqrt{5})^2 - 3(2)) = 2(20 - 6) = 2(14) = 28

3. 最終的な答え

(1) x+y=25x + y = 2\sqrt{5}
(2) xy=2xy = 2
(3) x2+y2=16x^2 + y^2 = 16
(4) x3+y3=285x^3 + y^3 = 28\sqrt{5}
(5) x3yx2y2+xy3=28x^3y - x^2y^2 + xy^3 = 28