与えられた式 $2mx - 6my$ を因数分解します。

代数学因数分解多項式共通因数
2025/3/20

1. 問題の内容

与えられた式 2mx6my2mx - 6my を因数分解します。

2. 解き方の手順

2つの項 2mx2mx6my6my に共通する因子を見つけます。
2つの項に共通する因子は 2m2m です。
2mx2mx から 2m2m を取り出すと xx が残ります。
6my6my から 2m2m を取り出すと 3y3y が残ります。
よって、2mx6my2mx - 6my2m(x3y)2m(x-3y) と因数分解できます。

3. 最終的な答え

2m(x3y)2m(x - 3y)

「代数学」の関連問題

以下の3つの問題を解きます。 (i) $a = (2+\sqrt{5})^2$, $b = (2-\sqrt{5})^2$ のとき、$a+b$ の値を求めます。 (ii) $x^2y + xy^2 -...

式の計算因数分解平方根
2025/4/10

与えられた不等式 $\frac{3x-1}{5} > \frac{5x+2}{6}$ を解く問題です。

不等式一次不等式式の計算
2025/4/10

$x^6 - y^6$ を因数分解する問題です。

因数分解式の展開多項式
2025/4/10

$\sum_{k=1}^{n} (2k - 7)$ を求めます。

シグマ数列の和等比数列等差数列
2025/4/10

複数の数列の和を求める問題です。28番の(1)から(6)までの問題を解きます。

数列総和シグマ公式
2025/4/10

数列 $\{5k+4\}$ の $k=1$ から $n$ までの和を求めます。つまり、 $\sum_{k=1}^{n} (5k+4)$ を計算します。

数列シグマ総和等差数列
2025/4/10

$\sum_{k=1}^{n} (5k + 4)$ を計算します。

数列シグマ和の公式
2025/4/10

与えられた等比数列に関する問題です。具体的には、一般項、xの値、等比数列の項数、一般項、aとbの値、和などを求める問題があります。

等比数列一般項数列シグマ
2025/4/10

ある等差数列の初項から第$n$項までの和を$S_n$とする。$S_{10} = 100$、 $S_{20} = 400$のとき、$S_n$を求めよ。また、$S_{30}$を求めよ。

等差数列数列の和線形方程式
2025/4/10

問題9(1)は、等差数列の初項から第$n$項までの和を$S_n$とする。$S_{10} = 100$, $S_{20} = 400$のとき、$S_n$を求め、また$S_{30}$を求める問題です。

数列等差数列連立方程式
2025/4/10