$x = \frac{\sqrt{6} + \sqrt{2}}{2}$ のとき、次の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$代数学式の計算有理化平方根分数式2025/5/81. 問題の内容x=6+22x = \frac{\sqrt{6} + \sqrt{2}}{2}x=26+2 のとき、次の式の値を求めよ。(1) x+1xx + \frac{1}{x}x+x1(2) x2+1x2x^2 + \frac{1}{x^2}x2+x212. 解き方の手順(1) x+1xx + \frac{1}{x}x+x1 を求める。まず、1x\frac{1}{x}x1 を計算する。1x=16+22=26+2\frac{1}{x} = \frac{1}{\frac{\sqrt{6}+\sqrt{2}}{2}} = \frac{2}{\sqrt{6}+\sqrt{2}}x1=26+21=6+22分母の有理化を行う。26+2=2(6−2)(6+2)(6−2)=2(6−2)6−2=2(6−2)4=6−22\frac{2}{\sqrt{6}+\sqrt{2}} = \frac{2(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})} = \frac{2(\sqrt{6}-\sqrt{2})}{6-2} = \frac{2(\sqrt{6}-\sqrt{2})}{4} = \frac{\sqrt{6}-\sqrt{2}}{2}6+22=(6+2)(6−2)2(6−2)=6−22(6−2)=42(6−2)=26−2したがって、x+1x=6+22+6−22=6+2+6−22=262=6x + \frac{1}{x} = \frac{\sqrt{6}+\sqrt{2}}{2} + \frac{\sqrt{6}-\sqrt{2}}{2} = \frac{\sqrt{6}+\sqrt{2}+\sqrt{6}-\sqrt{2}}{2} = \frac{2\sqrt{6}}{2} = \sqrt{6}x+x1=26+2+26−2=26+2+6−2=226=6(2) x2+1x2x^2 + \frac{1}{x^2}x2+x21 を求める。(x+1x)2=x2+2x1x+1x2=x2+2+1x2(x+\frac{1}{x})^2 = x^2 + 2x\frac{1}{x} + \frac{1}{x^2} = x^2 + 2 + \frac{1}{x^2}(x+x1)2=x2+2xx1+x21=x2+2+x21したがって、x2+1x2=(x+1x)2−2x^2 + \frac{1}{x^2} = (x+\frac{1}{x})^2 - 2x2+x21=(x+x1)2−2(1)より x+1x=6x + \frac{1}{x} = \sqrt{6}x+x1=6 であるから、x2+1x2=(6)2−2=6−2=4x^2 + \frac{1}{x^2} = (\sqrt{6})^2 - 2 = 6 - 2 = 4x2+x21=(6)2−2=6−2=43. 最終的な答え(1) 6\sqrt{6}6(2) 4