$x = \frac{\sqrt{6} + \sqrt{2}}{2}$ のとき、次の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$

代数学式の計算有理化平方根分数式
2025/5/8

1. 問題の内容

x=6+22x = \frac{\sqrt{6} + \sqrt{2}}{2} のとき、次の式の値を求めよ。
(1) x+1xx + \frac{1}{x}
(2) x2+1x2x^2 + \frac{1}{x^2}

2. 解き方の手順

(1) x+1xx + \frac{1}{x} を求める。
まず、1x\frac{1}{x} を計算する。
1x=16+22=26+2\frac{1}{x} = \frac{1}{\frac{\sqrt{6}+\sqrt{2}}{2}} = \frac{2}{\sqrt{6}+\sqrt{2}}
分母の有理化を行う。
26+2=2(62)(6+2)(62)=2(62)62=2(62)4=622\frac{2}{\sqrt{6}+\sqrt{2}} = \frac{2(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})} = \frac{2(\sqrt{6}-\sqrt{2})}{6-2} = \frac{2(\sqrt{6}-\sqrt{2})}{4} = \frac{\sqrt{6}-\sqrt{2}}{2}
したがって、
x+1x=6+22+622=6+2+622=262=6x + \frac{1}{x} = \frac{\sqrt{6}+\sqrt{2}}{2} + \frac{\sqrt{6}-\sqrt{2}}{2} = \frac{\sqrt{6}+\sqrt{2}+\sqrt{6}-\sqrt{2}}{2} = \frac{2\sqrt{6}}{2} = \sqrt{6}
(2) x2+1x2x^2 + \frac{1}{x^2} を求める。
(x+1x)2=x2+2x1x+1x2=x2+2+1x2(x+\frac{1}{x})^2 = x^2 + 2x\frac{1}{x} + \frac{1}{x^2} = x^2 + 2 + \frac{1}{x^2}
したがって、
x2+1x2=(x+1x)22x^2 + \frac{1}{x^2} = (x+\frac{1}{x})^2 - 2
(1)より x+1x=6x + \frac{1}{x} = \sqrt{6} であるから、
x2+1x2=(6)22=62=4x^2 + \frac{1}{x^2} = (\sqrt{6})^2 - 2 = 6 - 2 = 4

3. 最終的な答え

(1) 6\sqrt{6}
(2) 4

「代数学」の関連問題

$\log_{10}2 = a$、$\log_{10}3 = b$とするとき、$\log_{24}75$の値を$a$、$b$で表せ。

対数底の変換対数計算
2025/5/8

$6^{20}$ は何桁の数であるかを求める問題です。ただし、$\log_{10}2 = 0.3010$、$\log_{10}3 = 0.4771$とします。

対数桁数指数
2025/5/8

与えられた複数の式を因数分解する問題です。具体的には、以下の6つの式を因数分解します。 (1) $x^2 + 6xy + 8y^2$ (2) $x^2 + 3xy - 28y^2$ (3) $3x^2...

因数分解多項式
2025/5/8

与えられた対数の値を計算する問題です。具体的には、 (1) $\log_5 625$ (2) $\log_2 32$ (3) $\log_2 64$ (4) $\log_3 \sqrt[3]{27}$...

対数対数関数対数方程式対数の性質
2025/5/8

二次式 $3x^2 - 10x + 3$ を因数分解します。

二次方程式因数分解たすき掛け
2025/5/8

(1) $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ であるとき、次の値を小数第4位まで求めよ。 1. $\log_{10} \frac{4}{...

対数指数常用対数桁数
2025/5/8

次の方程式を解く問題です。 (1) $\log_3(x^2 - 2x) = 1$ (2) $\log_2(2x^2 - 4x) = 4$ (3) $(\log_3 x)^2 + \log_3 x - ...

対数方程式真数条件二次方程式
2025/5/8

整式 $P(x) = (x-b)(x^2 - ax + b + 3) + (b-a)(b+3)$ が与えられています。ここで、$a$ と $b$ は実数の定数です。 (1) $P(a)$ の値を求めま...

多項式因数分解3次方程式解の公式解と係数の関係
2025/5/8

$x$ の3次式 $P(x) = x^3 - 4x^2 + ax + b$ があり、$P(2) = 0$ である。ただし、$a, b$ は実数の定数である。 (1) $b$ を $a$ を用いて表せ。...

三次方程式因数分解虚数解解の公式判別式
2025/5/8

与えられた10個の多項式の積を展開しなさい。

多項式の展開代数
2025/5/8