与えられた分数の計算をします。式は以下の通りです。 $$\frac{2x}{\frac{x+9}{x+3} + \frac{x+3}{x+3}}$$代数学分数式式の計算代数2025/5/81. 問題の内容与えられた分数の計算をします。式は以下の通りです。2xx+9x+3+x+3x+3\frac{2x}{\frac{x+9}{x+3} + \frac{x+3}{x+3}}x+3x+9+x+3x+32x2. 解き方の手順まず、分母の分数の足し算を計算します。x+3x+3\frac{x+3}{x+3}x+3x+3 は1に等しいので、次のようになります。x+9x+3+x+3x+3=x+9x+3+1\frac{x+9}{x+3} + \frac{x+3}{x+3} = \frac{x+9}{x+3} + 1x+3x+9+x+3x+3=x+3x+9+11を通分すると、=x+9x+3+x+3x+3=x+9+x+3x+3=2x+12x+3= \frac{x+9}{x+3} + \frac{x+3}{x+3} = \frac{x+9+x+3}{x+3} = \frac{2x+12}{x+3}=x+3x+9+x+3x+3=x+3x+9+x+3=x+32x+12したがって、元の式は次のようになります。2x2x+12x+3\frac{2x}{\frac{2x+12}{x+3}}x+32x+122xこれは次のように書き換えることができます。2x⋅x+32x+12=2x(x+3)2x+12=2x(x+3)2(x+6)=x(x+3)x+62x \cdot \frac{x+3}{2x+12} = \frac{2x(x+3)}{2x+12} = \frac{2x(x+3)}{2(x+6)} = \frac{x(x+3)}{x+6}2x⋅2x+12x+3=2x+122x(x+3)=2(x+6)2x(x+3)=x+6x(x+3)3. 最終的な答えx(x+3)x+6\frac{x(x+3)}{x+6}x+6x(x+3)