与えられた10個の対数の値を計算する問題です。代数学対数指数対数の性質2025/5/81. 問題の内容与えられた10個の対数の値を計算する問題です。2. 解き方の手順各問題について、対数の性質を利用して値を計算します。(1) log464\log_4 64log464:43=644^3 = 6443=64なので、log464=3\log_4 64 = 3log464=3(2) log100.1\log_{10} 0.1log100.1:0.1=10−10.1 = 10^{-1}0.1=10−1なので、log100.1=−1\log_{10} 0.1 = -1log100.1=−1(3) log334\log_3 \sqrt[4]{3}log343:34=31/4\sqrt[4]{3} = 3^{1/4}43=31/4なので、log334=log331/4=14\log_3 \sqrt[4]{3} = \log_3 3^{1/4} = \frac{1}{4}log343=log331/4=41(4) log5125\log_5 \frac{1}{25}log5251:125=5−2\frac{1}{25} = 5^{-2}251=5−2なので、log5125=log55−2=−2\log_5 \frac{1}{25} = \log_5 5^{-2} = -2log5251=log55−2=−2(5) log64+log69\log_6 4 + \log_6 9log64+log69:log64+log69=log6(4×9)=log636=log662=2\log_6 4 + \log_6 9 = \log_6 (4 \times 9) = \log_6 36 = \log_6 6^2 = 2log64+log69=log6(4×9)=log636=log662=2(6) log575−log53\log_5 75 - \log_5 3log575−log53:log575−log53=log5753=log525=log552=2\log_5 75 - \log_5 3 = \log_5 \frac{75}{3} = \log_5 25 = \log_5 5^2 = 2log575−log53=log5375=log525=log552=2(7) log5100−13log564\log_5 100 - \frac{1}{3} \log_5 64log5100−31log564:log5100−13log564=log5100−log5(641/3)=log5100−log54=log51004=log525=log552=2\log_5 100 - \frac{1}{3} \log_5 64 = \log_5 100 - \log_5 (64^{1/3}) = \log_5 100 - \log_5 4 = \log_5 \frac{100}{4} = \log_5 25 = \log_5 5^2 = 2log5100−31log564=log5100−log5(641/3)=log5100−log54=log54100=log525=log552=2(8) 13log2125+log212−log230\frac{1}{3} \log_2 125 + \log_2 12 - \log_2 3031log2125+log212−log230:13log2125+log212−log230=log2(1251/3)+log212−log230=log25+log212−log230=log25×1230=log26030=log22=1\frac{1}{3} \log_2 125 + \log_2 12 - \log_2 30 = \log_2 (125^{1/3}) + \log_2 12 - \log_2 30 = \log_2 5 + \log_2 12 - \log_2 30 = \log_2 \frac{5 \times 12}{30} = \log_2 \frac{60}{30} = \log_2 2 = 131log2125+log212−log230=log2(1251/3)+log212−log230=log25+log212−log230=log2305×12=log23060=log22=1(9) log1632\log_{16} 32log1632:16=2416 = 2^416=24 and 32=2532 = 2^532=25log1632=log232log216=54\log_{16} 32 = \frac{\log_2 32}{\log_2 16} = \frac{5}{4}log1632=log216log232=45(10) log8127\log_{81} 27log8127:81=3481 = 3^481=34 and 27=3327 = 3^327=33log8127=log327log381=34\log_{81} 27 = \frac{\log_3 27}{\log_3 81} = \frac{3}{4}log8127=log381log327=433. 最終的な答え(1) 3(2) -1(3) 1/4(4) -2(5) 2(6) 2(7) 2(8) 1(9) 5/4(10) 3/4