3次の正方行列 $A$ の行列式が1である。行列 $A$ の第2行に第3行の3倍を足した行列を $B$ とする。行列 $B$ の行列式を求める。

代数学行列式線形代数行列の性質
2025/5/9

1. 問題の内容

3次の正方行列 AA の行列式が1である。行列 AA の第2行に第3行の3倍を足した行列を BB とする。行列 BB の行列式を求める。

2. 解き方の手順

行列 AA の行列式を A|A| と表す。問題文より、A=1|A| = 1 である。
行列の行に別の行の定数倍を加えても、行列式の値は変わらない。これは行列式の性質の一つである。
したがって、B=A|B| = |A| である。
よって、B=1|B| = 1 である。

3. 最終的な答え

1

「代数学」の関連問題

3次方程式 $4x^3 - 6x^2 - 27x + 2 = 0$ を解く問題です。

3次方程式有理根定理因数分解二次方程式解の公式
2025/5/9

不等式 $13(n+5) \le 7n + 200$ を満たす最大の自然数 $n$ を求める問題です。

不等式一次不等式自然数
2025/5/9

与えられた等式 $a^4 + b^4 = \frac{1}{2}\{(a^2 + b^2)^2 + (a+b)^2(a-b)^2\}$ を証明せよ。

等式の証明式の展開因数分解
2025/5/9

3次方程式 $x^3 + x^2 + 2x - 3 = 0$ の3つの解を $\alpha, \beta, \gamma$ とするとき、以下の値を求めます。 (1) $\alpha^2 + \beta...

三次方程式解と係数の関係式の計算
2025/5/9

与えられた連立不等式を解き、$x$ の範囲を求める問題です。 与えられた不等式は次の通りです。 $ \begin{cases} 0 \le x \le \frac{3}{2} \\ \frac{1}{...

不等式連立不等式数直線範囲
2025/5/9

与えられた式 $27a^3 - 27a^2b + 9ab^2 - b^3$ を因数分解せよ。

因数分解多項式式の展開
2025/5/9

与えられた式 $ax + bx + ay + by$ を因数分解する問題です。

因数分解多項式共通因数
2025/5/9

与えられた式 $xy+x+y+1$ を因数分解する問題です。

因数分解多項式代数式
2025/5/9

次の方程式を解いて、$x$ の値を求めます。 $\frac{1}{2}x = \frac{2}{3}(18000 - x) \times 3$

一次方程式方程式の解法分数
2025/5/9

与えられた式 $mx - x + m - 1$ を因数分解してください。

因数分解式変形
2025/5/9