三角形ABCにおいて、角C = 30°、辺c = $\sqrt{6}$ のとき、この三角形の外接円の半径を求めなさい。ただし、図の情報として、角A = 60°、角B = 45°である。

幾何学三角比正弦定理外接円三角形
2025/5/9

1. 問題の内容

三角形ABCにおいて、角C = 30°、辺c = 6\sqrt{6} のとき、この三角形の外接円の半径を求めなさい。ただし、図の情報として、角A = 60°、角B = 45°である。

2. 解き方の手順

外接円の半径Rを求めるには、正弦定理を利用する。正弦定理は、
asinA=bsinB=csinC=2R\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R
で表される。
問題文より、c=6c = \sqrt{6}、角C = 30°であるから、
6sin30=2R\frac{\sqrt{6}}{\sin 30^\circ} = 2R
sin30=12\sin 30^\circ = \frac{1}{2} であるから、
612=2R\frac{\sqrt{6}}{\frac{1}{2}} = 2R
26=2R2\sqrt{6} = 2R
R=6R = \sqrt{6}

3. 最終的な答え

6\sqrt{6}

「幾何学」の関連問題

$\theta$ が鋭角で、$\sin\theta = \frac{\sqrt{5}}{3}$ のとき、$\cos\theta$ と $\tan\theta$ の値を求める。

三角比三角関数鋭角sincostan
2025/5/12

$xy$平面において、原点$O$, 点$a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, 点$b = \begin{pmatrix} b_1 \\ b_2 ...

ベクトル平行四辺形面積線形代数行列
2025/5/12

木から6.2m離れた地点で木の先端を見上げる角度を測ったところ28°であった。目の高さが1.6mであるとき、木の高さを小数第2位を四捨五入して求めよ。ただし、$\sin 28^\circ = 0.46...

三角比tan高さ角度
2025/5/11

木から6.2m離れた地点から木の先端を見上げる角度を測ったところ28°だった。目の高さを1.6m, $\sin 28^\circ = 0.4695, \cos 28^\circ = 0.8829, \...

三角比tan高さ角度四捨五入
2025/5/11

直角三角形ABCにおいて、$\angle C$ が直角で、$AB = 5$, $AC = \sqrt{13}$ のとき、$\sin B$ と $\cos B$ の値を求めよ。

三角比直角三角形ピタゴラスの定理
2025/5/11

底面の半径が2、母線の長さが12の円錐がある。点Aから円錐の側面をそって点Aまで戻るときの最短距離を求める。

円錐展開図最短距離扇形正三角形
2025/5/11

平面上の異なる2点A, Bがある。点Pが以下の二つの不等式を同時に満たすとき、点Pが存在する範囲を求める。 $ \overrightarrow{AP} \cdot \overrightarrow{BP...

ベクトル内積不等式領域
2025/5/11

平面上の異なる2点A, Bがある。点Pが以下の二つの不等式を同時に満たすとき、点Pの存在する範囲を図示する。 $\begin{cases} \overrightarrow{AP} \cdot \ove...

ベクトル内積不等式領域
2025/5/11

四面体OABCにおいて、点Oから平面ABCに下ろした垂線の足をHとする。このとき、$\vec{OH} = \alpha\vec{OA} + \beta\vec{OB} + \gamma\vec{OC}...

ベクトル空間ベクトル四面体平面の方程式
2025/5/11

四面体OABCがあり、点Oから平面ABCに下ろした垂線の足をHとします。ベクトル $\overrightarrow{OH}$ は $\overrightarrow{OA}, \overrightarr...

ベクトル四面体平面空間図形
2025/5/11