$x = \frac{1}{\sqrt{5}-2}$、 $y = \frac{1}{\sqrt{5}+2}$のとき、次の式の値を求めよ。 (1) $x+y$ , $xy$ (2) $x^2+y^2$代数学式の計算有理化平方根展開代入2025/5/101. 問題の内容x=15−2x = \frac{1}{\sqrt{5}-2}x=5−21、 y=15+2y = \frac{1}{\sqrt{5}+2}y=5+21のとき、次の式の値を求めよ。(1) x+yx+yx+y , xyxyxy(2) x2+y2x^2+y^2x2+y22. 解き方の手順(1) まず、xxx と yyy をそれぞれ有理化する。x=15−2=15−2⋅5+25+2=5+25−4=5+2x = \frac{1}{\sqrt{5}-2} = \frac{1}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2} = \frac{\sqrt{5}+2}{5-4} = \sqrt{5}+2x=5−21=5−21⋅5+25+2=5−45+2=5+2y=15+2=15+2⋅5−25−2=5−25−4=5−2y = \frac{1}{\sqrt{5}+2} = \frac{1}{\sqrt{5}+2} \cdot \frac{\sqrt{5}-2}{\sqrt{5}-2} = \frac{\sqrt{5}-2}{5-4} = \sqrt{5}-2y=5+21=5+21⋅5−25−2=5−45−2=5−2次に、x+yx+yx+y と xyxyxy を計算する。x+y=(5+2)+(5−2)=25x+y = (\sqrt{5}+2) + (\sqrt{5}-2) = 2\sqrt{5}x+y=(5+2)+(5−2)=25xy=(5+2)(5−2)=5−4=1xy = (\sqrt{5}+2)(\sqrt{5}-2) = 5 - 4 = 1xy=(5+2)(5−2)=5−4=1(2) x2+y2x^2+y^2x2+y2 の値を求める。x2+y2=(x+y)2−2xyx^2+y^2 = (x+y)^2 - 2xyx2+y2=(x+y)2−2xyx+y=25x+y = 2\sqrt{5}x+y=25 なので、(x+y)2=(25)2=4⋅5=20(x+y)^2 = (2\sqrt{5})^2 = 4 \cdot 5 = 20(x+y)2=(25)2=4⋅5=20xy=1xy = 1xy=1 なので、2xy=2⋅1=22xy = 2 \cdot 1 = 22xy=2⋅1=2x2+y2=(x+y)2−2xy=20−2=18x^2+y^2 = (x+y)^2 - 2xy = 20 - 2 = 18x2+y2=(x+y)2−2xy=20−2=183. 最終的な答え(1) x+y=25x+y = 2\sqrt{5}x+y=25 , xy=1xy = 1xy=1(2) x2+y2=18x^2+y^2 = 18x2+y2=18