与えられた多項式 $x^2 - x^3 + 5 + x$ の次数を求める問題です。定数項はすでに5とわかっています。

代数学多項式次数代数
2025/5/10

1. 問題の内容

与えられた多項式 x2x3+5+xx^2 - x^3 + 5 + x の次数を求める問題です。定数項はすでに5とわかっています。

2. 解き方の手順

多項式の次数は、多項式に含まれる項の中で、変数の指数が最も大きいものの値です。
与えられた多項式は x2x3+5+xx^2 - x^3 + 5 + x です。この多項式に含まれる各項の次数は次の通りです。
* x2x^2 の次数は2
* x3-x^3 の次数は3
* 55 の次数は0
* xx の次数は1
したがって、多項式 x2x3+5+xx^2 - x^3 + 5 + x の次数は3です。

3. 最終的な答え

次数は 3

「代数学」の関連問題

与えられた式 $(a+b-c)(ab-bc-ca)+abc$ を展開し、整理して簡単にしてください。

式の展開因数分解多項式
2025/5/10

与えられた連立不等式を解き、$a$ の値によって連立不等式の解が変わる状況を考察する問題。具体的には、不等式①の解を $a$ を用いて表し、不等式②の解を求め、連立不等式が解を持たないような $a$ ...

連立不等式絶対値不等式の解数直線
2025/5/10

与えられた2次式 $3x^2 + x - 10$ を因数分解する問題です。問題文に「たすきがけ」とあるので、たすきがけを用いて因数分解します。

因数分解二次式たすきがけ
2025/5/10

与えられた2つの式を、$x-y$を一つのまとまりとして見て因数分解する問題です。 (1) $a(x-y) + (x-y)$ (2) $(x-y)^2 - 5(x-y) + 6$

因数分解式の展開文字式
2025/5/10

与えられた式 $a^2(b+c) + b^2(c+a) + c^2(a+b) + 2abc$ を因数分解する問題です。

因数分解多項式対称式
2025/5/10

複素数平面において、$|z-(1-i)| = \sqrt{2}$ で表される円上の3点O(0), A($\alpha$), B($\beta$)が正三角形の頂点をなすとき、$\alpha$と$\bet...

複素数複素数平面幾何学正三角形
2025/5/10

与えられた式 $a^2 b + a - b - 1$ を因数分解します。

因数分解式の展開多項式
2025/5/10

与えられた二次式 $3x^2 + x - 10$ を、たすき掛けを用いて因数分解する問題です。画像にはたすき掛けの途中経過が示されています。

因数分解二次式たすき掛け
2025/5/10

与えられた2次式 $x^2 + x - 6$ を因数分解してください。

因数分解二次式多項式
2025/5/10

行列 $A = \begin{bmatrix} 1 & a & 3 \\ 2 & 4 & 6 \\ 0 & a & 3 \end{bmatrix}$ の階数を求める。

線形代数行列階数簡約化
2025/5/10