定積分 $\int_{0}^{\frac{\pi}{2}} \sin{\frac{5}{2}x}\cos{\frac{x}{2}} dx$ を計算します。解析学定積分三角関数積和の公式2025/5/111. 問題の内容定積分 ∫0π2sin52xcosx2dx\int_{0}^{\frac{\pi}{2}} \sin{\frac{5}{2}x}\cos{\frac{x}{2}} dx∫02πsin25xcos2xdx を計算します。2. 解き方の手順まず、三角関数の積和の公式を使って、積分を計算しやすい形に変形します。sinAcosB=12[sin(A+B)+sin(A−B)]\sin{A}\cos{B} = \frac{1}{2}[\sin(A+B) + \sin(A-B)]sinAcosB=21[sin(A+B)+sin(A−B)] を用いると、sin52xcosx2=12[sin(52x+12x)+sin(52x−12x)]=12[sin3x+sin2x]\sin{\frac{5}{2}x}\cos{\frac{x}{2}} = \frac{1}{2}[\sin(\frac{5}{2}x+\frac{1}{2}x) + \sin(\frac{5}{2}x-\frac{1}{2}x)] = \frac{1}{2}[\sin{3x} + \sin{2x}]sin25xcos2x=21[sin(25x+21x)+sin(25x−21x)]=21[sin3x+sin2x]したがって、積分は∫0π2sin52xcosx2dx=∫0π212[sin3x+sin2x]dx=12∫0π2(sin3x+sin2x)dx\int_{0}^{\frac{\pi}{2}} \sin{\frac{5}{2}x}\cos{\frac{x}{2}} dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{2}[\sin{3x} + \sin{2x}] dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\sin{3x} + \sin{2x}) dx∫02πsin25xcos2xdx=∫02π21[sin3x+sin2x]dx=21∫02π(sin3x+sin2x)dx次に、それぞれの三角関数の積分を計算します。∫sin3xdx=−13cos3x+C\int \sin{3x} dx = -\frac{1}{3}\cos{3x} + C∫sin3xdx=−31cos3x+C∫sin2xdx=−12cos2x+C\int \sin{2x} dx = -\frac{1}{2}\cos{2x} + C∫sin2xdx=−21cos2x+Cしたがって、12∫0π2(sin3x+sin2x)dx=12[−13cos3x−12cos2x]0π2\frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\sin{3x} + \sin{2x}) dx = \frac{1}{2} [-\frac{1}{3}\cos{3x} - \frac{1}{2}\cos{2x}]_{0}^{\frac{\pi}{2}}21∫02π(sin3x+sin2x)dx=21[−31cos3x−21cos2x]02π=12[(−13cos3π2−12cosπ)−(−13cos0−12cos0)]= \frac{1}{2} [(-\frac{1}{3}\cos{\frac{3\pi}{2}} - \frac{1}{2}\cos{\pi}) - (-\frac{1}{3}\cos{0} - \frac{1}{2}\cos{0})]=21[(−31cos23π−21cosπ)−(−31cos0−21cos0)]=12[(−13⋅0−12⋅(−1))−(−13⋅1−12⋅1)]= \frac{1}{2} [(-\frac{1}{3} \cdot 0 - \frac{1}{2} \cdot (-1)) - (-\frac{1}{3} \cdot 1 - \frac{1}{2} \cdot 1)]=21[(−31⋅0−21⋅(−1))−(−31⋅1−21⋅1)]=12[(12)−(−13−12)]= \frac{1}{2} [(\frac{1}{2}) - (-\frac{1}{3} - \frac{1}{2})]=21[(21)−(−31−21)]=12[12+13+12]=12[1+13]=12⋅43=23= \frac{1}{2} [\frac{1}{2} + \frac{1}{3} + \frac{1}{2}] = \frac{1}{2} [1 + \frac{1}{3}] = \frac{1}{2} \cdot \frac{4}{3} = \frac{2}{3}=21[21+31+21]=21[1+31]=21⋅34=323. 最終的な答え23\frac{2}{3}32