$\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos{t} \cos{3t} dt$ を計算する問題です。解析学積分三角関数積和の公式2025/5/111. 問題の内容∫π65π6costcos3tdt\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos{t} \cos{3t} dt∫6π65πcostcos3tdt を計算する問題です。2. 解き方の手順積和の公式 cosAcosB=12(cos(A+B)+cos(A−B))\cos{A}\cos{B} = \frac{1}{2}(\cos{(A+B)} + \cos{(A-B)})cosAcosB=21(cos(A+B)+cos(A−B)) を用いて積分を計算します。costcos3t=12(cos(t+3t)+cos(t−3t))=12(cos4t+cos(−2t))=12(cos4t+cos2t)\cos{t}\cos{3t} = \frac{1}{2}(\cos{(t+3t)} + \cos{(t-3t)}) = \frac{1}{2}(\cos{4t} + \cos{(-2t)}) = \frac{1}{2}(\cos{4t} + \cos{2t})costcos3t=21(cos(t+3t)+cos(t−3t))=21(cos4t+cos(−2t))=21(cos4t+cos2t)したがって、∫π65π6costcos3tdt=∫π65π612(cos4t+cos2t)dt=12∫π65π6(cos4t+cos2t)dt\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos{t} \cos{3t} dt = \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \frac{1}{2}(\cos{4t} + \cos{2t}) dt = \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (\cos{4t} + \cos{2t}) dt∫6π65πcostcos3tdt=∫6π65π21(cos4t+cos2t)dt=21∫6π65π(cos4t+cos2t)dt12∫π65π6(cos4t+cos2t)dt=12[14sin4t+12sin2t]π65π6\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (\cos{4t} + \cos{2t}) dt = \frac{1}{2}[\frac{1}{4}\sin{4t} + \frac{1}{2}\sin{2t}]_{\frac{\pi}{6}}^{\frac{5\pi}{6}}21∫6π65π(cos4t+cos2t)dt=21[41sin4t+21sin2t]6π65π=12[14sin20π6+12sin10π6−(14sin4π6+12sin2π6)]= \frac{1}{2}[\frac{1}{4}\sin{\frac{20\pi}{6}} + \frac{1}{2}\sin{\frac{10\pi}{6}} - (\frac{1}{4}\sin{\frac{4\pi}{6}} + \frac{1}{2}\sin{\frac{2\pi}{6}})]=21[41sin620π+21sin610π−(41sin64π+21sin62π)]=12[14sin10π3+12sin5π3−(14sin2π3+12sinπ3)]= \frac{1}{2}[\frac{1}{4}\sin{\frac{10\pi}{3}} + \frac{1}{2}\sin{\frac{5\pi}{3}} - (\frac{1}{4}\sin{\frac{2\pi}{3}} + \frac{1}{2}\sin{\frac{\pi}{3}})]=21[41sin310π+21sin35π−(41sin32π+21sin3π)]=12[14sin(4π3)+12sin(5π3)−(14sin(2π3)+12sin(π3))]= \frac{1}{2}[\frac{1}{4}\sin{(\frac{4\pi}{3})} + \frac{1}{2}\sin{(\frac{5\pi}{3})} - (\frac{1}{4}\sin{(\frac{2\pi}{3})} + \frac{1}{2}\sin{(\frac{\pi}{3})})]=21[41sin(34π)+21sin(35π)−(41sin(32π)+21sin(3π))]=12[14(−32)+12(−32)−(14(32)+12(32))]= \frac{1}{2}[\frac{1}{4}(-\frac{\sqrt{3}}{2}) + \frac{1}{2}(-\frac{\sqrt{3}}{2}) - (\frac{1}{4}(\frac{\sqrt{3}}{2}) + \frac{1}{2}(\frac{\sqrt{3}}{2}))]=21[41(−23)+21(−23)−(41(23)+21(23))]=12[−38−34−38−34]= \frac{1}{2}[-\frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{4}]=21[−83−43−83−43]=12[−34−32]= \frac{1}{2}[-\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{2}]=21[−43−23]=12[−334]=−338= \frac{1}{2}[-\frac{3\sqrt{3}}{4}] = -\frac{3\sqrt{3}}{8}=21[−433]=−8333. 最終的な答え−338-\frac{3\sqrt{3}}{8}−833