$\sin \theta = -\frac{3}{5}$ のとき、$\cos \theta$ と $\tan \theta$ の値を求めよ。ただし、$\theta$ は第4象限の角である。

幾何学三角関数三角比象限cossintan
2025/5/11

1. 問題の内容

sinθ=35\sin \theta = -\frac{3}{5} のとき、cosθ\cos \thetatanθ\tan \theta の値を求めよ。ただし、θ\theta は第4象限の角である。

2. 解き方の手順

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 という三角関数の基本公式を利用する。
sinθ=35\sin \theta = -\frac{3}{5} を代入すると、
(35)2+cos2θ=1(-\frac{3}{5})^2 + \cos^2 \theta = 1
925+cos2θ=1\frac{9}{25} + \cos^2 \theta = 1
cos2θ=1925\cos^2 \theta = 1 - \frac{9}{25}
cos2θ=2525925\cos^2 \theta = \frac{25}{25} - \frac{9}{25}
cos2θ=1625\cos^2 \theta = \frac{16}{25}
したがって、cosθ=±1625=±45\cos \theta = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5} となる。
θ\theta は第4象限の角なので、cosθ>0\cos \theta > 0 である。
よって、cosθ=45\cos \theta = \frac{4}{5}
次に、tanθ\tan \theta の値を求める。tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta} であるから、
tanθ=3545=35×54=34\tan \theta = \frac{-\frac{3}{5}}{\frac{4}{5}} = -\frac{3}{5} \times \frac{5}{4} = -\frac{3}{4}

3. 最終的な答え

cosθ=45\cos \theta = \frac{4}{5}
tanθ=34\tan \theta = -\frac{3}{4}

「幾何学」の関連問題

$|\vec{a}|=1$, $|\vec{b}|=5$ で、$\vec{a}$ と $\vec{b}$ のなす角が $120^\circ$ である。$2\vec{a}-\vec{b}$ と $\ve...

ベクトル内積ベクトルのなす角
2025/5/12

問題3: ベクトルの絶対値 $|a|=1$, $|b|=2$ で、ベクトル $a$ とベクトル $b$ のなす角が $135^\circ$ のとき、内積 $a \cdot b$ の値を求めよ。 問題4...

ベクトル内積ベクトルの絶対値ベクトルのなす角
2025/5/12

三角形ABCにおいて、$|AB|=1$, $|AC|=2$, $|BC|=\sqrt{6}$であるとする。 (1) ベクトル$\overrightarrow{AB}$と$\overrightarrow...

ベクトル内積外接円余弦定理
2025/5/12

三角錐PABCにおいて、PA=PB=PC=4, AB=6, BC=4, CA=5である。頂点Pから底面ABCへ下ろした垂線と底面ABCとの交点をHとする。 (1) AHの長さを求めよ。 (2) PHの...

三角錐体積外心三平方の定理ヘロンの公式
2025/5/12

(1) 2点$(-3, 0)$, $(5, 0)$を通り、頂点が直線$y = 2x + 6$上にある放物線の頂点の座標を求めます。

放物線二次関数頂点座標
2025/5/12

$|\vec{a}| = 1$, $|\vec{b}| = 5$であるとき、以下の問題を解く。 (1) $|3\vec{a} + \vec{b}| = 7$のとき、$\vec{a}$と$\vec{b}...

ベクトル内積ベクトルの大きさベクトルのなす角
2025/5/12

ベクトル $\vec{a}$ の大きさが3、ベクトル $\vec{b}$ の大きさが3、$\vec{a}$ と $\vec{b}$ のなす角が120°のとき、ベクトル $\vec{a} + 2\vec...

ベクトル内積ベクトルの大きさベクトルのなす角
2025/5/12

$\| \vec{a} \| = 1$, $\| \vec{b} \| = 2$ であり、$\vec{a}$ と $\vec{b}$ のなす角が $135^\circ$ のとき、$\vec{a} \c...

ベクトル内積ベクトルの大きさベクトルのなす角
2025/5/12

$0^\circ \le \theta \le 180^\circ$ の範囲で、$\tan \theta = -2\sqrt{2}$ のとき、$\cos \theta$ と $\sin \theta$...

三角関数三角比相互関係角度sincostan
2025/5/12

$\theta$ が鋭角で、$\sin\theta = \frac{\sqrt{5}}{3}$ のとき、$\cos\theta$ と $\tan\theta$ の値を求める。

三角比三角関数鋭角sincostan
2025/5/12