$f(x) = \log(\sqrt{a^2 + x^2} - x)$ が与えられたとき、多項式 $f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$ を求める。解析学対数関数導関数テイラー展開微分2025/5/111. 問題の内容f(x)=log(a2+x2−x)f(x) = \log(\sqrt{a^2 + x^2} - x)f(x)=log(a2+x2−x) が与えられたとき、多項式 f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3f(0)+f′(0)x+2!f′′(0)x2+3!f′′′(0)x3 を求める。2. 解き方の手順まず、f(x)f(x)f(x) の導関数を計算します。f′(x)=1a2+x2−x⋅(2x2a2+x2−1)=1a2+x2−x⋅(xa2+x2−1)=1a2+x2−x⋅x−a2+x2a2+x2=−1a2+x2f'(x) = \frac{1}{\sqrt{a^2 + x^2} - x} \cdot \left( \frac{2x}{2\sqrt{a^2 + x^2}} - 1 \right) = \frac{1}{\sqrt{a^2 + x^2} - x} \cdot \left( \frac{x}{\sqrt{a^2 + x^2}} - 1 \right) = \frac{1}{\sqrt{a^2 + x^2} - x} \cdot \frac{x - \sqrt{a^2 + x^2}}{\sqrt{a^2 + x^2}} = -\frac{1}{\sqrt{a^2 + x^2}}f′(x)=a2+x2−x1⋅(2a2+x22x−1)=a2+x2−x1⋅(a2+x2x−1)=a2+x2−x1⋅a2+x2x−a2+x2=−a2+x21したがって、f′(x)=−1a2+x2=−(a2+x2)−12f'(x) = -\frac{1}{\sqrt{a^2 + x^2}} = -(a^2 + x^2)^{-\frac{1}{2}}f′(x)=−a2+x21=−(a2+x2)−21次に、f′′(x)f''(x)f′′(x) を計算します。f′′(x)=ddx(−(a2+x2)−12)=−(−12)(a2+x2)−32⋅2x=x(a2+x2)−32f''(x) = \frac{d}{dx} \left( -(a^2 + x^2)^{-\frac{1}{2}} \right) = - (-\frac{1}{2}) (a^2 + x^2)^{-\frac{3}{2}} \cdot 2x = x(a^2 + x^2)^{-\frac{3}{2}}f′′(x)=dxd(−(a2+x2)−21)=−(−21)(a2+x2)−23⋅2x=x(a2+x2)−23さらに、f′′′(x)f'''(x)f′′′(x) を計算します。f′′′(x)=ddx(x(a2+x2)−32)=(a2+x2)−32+x(−32)(a2+x2)−52⋅2x=(a2+x2)−32−3x2(a2+x2)−52=a2+x2−3x2(a2+x2)52=a2−2x2(a2+x2)52f'''(x) = \frac{d}{dx} \left( x(a^2 + x^2)^{-\frac{3}{2}} \right) = (a^2 + x^2)^{-\frac{3}{2}} + x(-\frac{3}{2}) (a^2 + x^2)^{-\frac{5}{2}} \cdot 2x = (a^2 + x^2)^{-\frac{3}{2}} - 3x^2(a^2 + x^2)^{-\frac{5}{2}} = \frac{a^2 + x^2 - 3x^2}{(a^2 + x^2)^{\frac{5}{2}}} = \frac{a^2 - 2x^2}{(a^2 + x^2)^{\frac{5}{2}}}f′′′(x)=dxd(x(a2+x2)−23)=(a2+x2)−23+x(−23)(a2+x2)−25⋅2x=(a2+x2)−23−3x2(a2+x2)−25=(a2+x2)25a2+x2−3x2=(a2+x2)25a2−2x2次に、それぞれの x=0x = 0x=0 における値を計算します。f(0)=log(a2−0)=log(a)f(0) = \log(\sqrt{a^2} - 0) = \log(a)f(0)=log(a2−0)=log(a)f′(0)=−1a2+0=−1af'(0) = -\frac{1}{\sqrt{a^2 + 0}} = -\frac{1}{a}f′(0)=−a2+01=−a1f′′(0)=0(a2+0)−32=0f''(0) = 0(a^2 + 0)^{-\frac{3}{2}} = 0f′′(0)=0(a2+0)−23=0f′′′(0)=a2−2(0)(a2+0)52=a2a5=1a3f'''(0) = \frac{a^2 - 2(0)}{(a^2 + 0)^{\frac{5}{2}}} = \frac{a^2}{a^5} = \frac{1}{a^3}f′′′(0)=(a2+0)25a2−2(0)=a5a2=a31したがって、f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3=log(a)−1ax+02x2+1a36x3=log(a)−1ax+16a3x3f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 = \log(a) - \frac{1}{a}x + \frac{0}{2}x^2 + \frac{\frac{1}{a^3}}{6}x^3 = \log(a) - \frac{1}{a}x + \frac{1}{6a^3}x^3f(0)+f′(0)x+2!f′′(0)x2+3!f′′′(0)x3=log(a)−a1x+20x2+6a31x3=log(a)−a1x+6a31x33. 最終的な答えlog(a)−1ax+16a3x3\log(a) - \frac{1}{a}x + \frac{1}{6a^3}x^3log(a)−a1x+6a31x3