## 問題の概要解析学微分指数関数累乗根関数の微分2025/5/12## 問題の概要与えられた関数 yyy を xnx^nxn の形に変形し、その後微分する問題です。 関数は全部で10個与えられています。## 解き方の手順各関数について、xnx^nxn の形に変形し、微分を行います。微分には、公式 ddxxn=nxn−1\frac{d}{dx}x^n = nx^{n-1}dxdxn=nxn−1 を利用します。(1) y=x2x3=x2+3=x5y = x^2 x^3 = x^{2+3} = x^5y=x2x3=x2+3=x5 dydx=5x5−1=5x4\frac{dy}{dx} = 5x^{5-1} = 5x^4dxdy=5x5−1=5x4(2) y=x8x2=x8−2=x6y = \frac{x^8}{x^2} = x^{8-2} = x^6y=x2x8=x8−2=x6 dydx=6x6−1=6x5\frac{dy}{dx} = 6x^{6-1} = 6x^5dxdy=6x6−1=6x5(3) y=1x4=x−4y = \frac{1}{x^4} = x^{-4}y=x41=x−4 dydx=−4x−4−1=−4x−5=−4x5\frac{dy}{dx} = -4x^{-4-1} = -4x^{-5} = -\frac{4}{x^5}dxdy=−4x−4−1=−4x−5=−x54(4) y=x7=x17y = \sqrt[7]{x} = x^{\frac{1}{7}}y=7x=x71 dydx=17x17−1=17x−67=17x67\frac{dy}{dx} = \frac{1}{7}x^{\frac{1}{7}-1} = \frac{1}{7}x^{-\frac{6}{7}} = \frac{1}{7\sqrt[7]{x^6}}dxdy=71x71−1=71x−76=77x61(5) y=1x43=1x43=x−43y = \frac{1}{\sqrt[3]{x^4}} = \frac{1}{x^{\frac{4}{3}}} = x^{-\frac{4}{3}}y=3x41=x341=x−34 dydx=−43x−43−1=−43x−73=−43x73\frac{dy}{dx} = -\frac{4}{3}x^{-\frac{4}{3}-1} = -\frac{4}{3}x^{-\frac{7}{3}} = -\frac{4}{3\sqrt[3]{x^7}}dxdy=−34x−34−1=−34x−37=−33x74(6) y=xx=x1x12=x1+12=x32y = x \sqrt{x} = x^1 x^{\frac{1}{2}} = x^{1+\frac{1}{2}} = x^{\frac{3}{2}}y=xx=x1x21=x1+21=x23 dydx=32x32−1=32x12=32x\frac{dy}{dx} = \frac{3}{2}x^{\frac{3}{2}-1} = \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}\sqrt{x}dxdy=23x23−1=23x21=23x(7) y=x2x5=x2x15=x2−15=x95y = \frac{x^2}{\sqrt[5]{x}} = \frac{x^2}{x^{\frac{1}{5}}} = x^{2-\frac{1}{5}} = x^{\frac{9}{5}}y=5xx2=x51x2=x2−51=x59 dydx=95x95−1=95x45=95x45\frac{dy}{dx} = \frac{9}{5}x^{\frac{9}{5}-1} = \frac{9}{5}x^{\frac{4}{5}} = \frac{9}{5}\sqrt[5]{x^4}dxdy=59x59−1=59x54=595x4(8) y=1xx23=1x1x23=1x1+23=1x53=x−53y = \frac{1}{x \sqrt[3]{x^2}} = \frac{1}{x^1 x^{\frac{2}{3}}} = \frac{1}{x^{1+\frac{2}{3}}} = \frac{1}{x^{\frac{5}{3}}} = x^{-\frac{5}{3}}y=x3x21=x1x321=x1+321=x351=x−35 dydx=−53x−53−1=−53x−83=−53x83\frac{dy}{dx} = -\frac{5}{3}x^{-\frac{5}{3}-1} = -\frac{5}{3}x^{-\frac{8}{3}} = -\frac{5}{3\sqrt[3]{x^8}}dxdy=−35x−35−1=−35x−38=−33x85(9) y=1xx3=1xx123=1x323=1x32⋅13=1x12=x−12y = \frac{1}{\sqrt[3]{x \sqrt{x}}} = \frac{1}{\sqrt[3]{x x^{\frac{1}{2}}}} = \frac{1}{\sqrt[3]{x^{\frac{3}{2}}}} = \frac{1}{x^{\frac{3}{2} \cdot \frac{1}{3}}} = \frac{1}{x^{\frac{1}{2}}} = x^{-\frac{1}{2}}y=3xx1=3xx211=3x231=x23⋅311=x211=x−21 dydx=−12x−12−1=−12x−32=−12x3\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}} = -\frac{1}{2\sqrt{x^3}}dxdy=−21x−21−1=−21x−23=−2x31(10) y=x94=(x92)14=x98y = \sqrt[4]{\sqrt{x^9}} = (x^{\frac{9}{2}})^{\frac{1}{4}} = x^{\frac{9}{8}}y=4x9=(x29)41=x89 dydx=98x98−1=98x18=98x8\frac{dy}{dx} = \frac{9}{8} x^{\frac{9}{8}-1} = \frac{9}{8} x^{\frac{1}{8}} = \frac{9}{8} \sqrt[8]{x}dxdy=89x89−1=89x81=898x## 最終的な答え(1) dydx=5x4\frac{dy}{dx} = 5x^4dxdy=5x4(2) dydx=6x5\frac{dy}{dx} = 6x^5dxdy=6x5(3) dydx=−4x5\frac{dy}{dx} = -\frac{4}{x^5}dxdy=−x54(4) dydx=17x67\frac{dy}{dx} = \frac{1}{7\sqrt[7]{x^6}}dxdy=77x61(5) dydx=−43x73\frac{dy}{dx} = -\frac{4}{3\sqrt[3]{x^7}}dxdy=−33x74(6) dydx=32x\frac{dy}{dx} = \frac{3}{2}\sqrt{x}dxdy=23x(7) dydx=95x45\frac{dy}{dx} = \frac{9}{5}\sqrt[5]{x^4}dxdy=595x4(8) dydx=−53x83\frac{dy}{dx} = -\frac{5}{3\sqrt[3]{x^8}}dxdy=−33x85(9) dydx=−12x3\frac{dy}{dx} = -\frac{1}{2\sqrt{x^3}}dxdy=−2x31(10) dydx=98x8\frac{dy}{dx} = \frac{9}{8} \sqrt[8]{x}dxdy=898x