一次関数 $y = \frac{1}{4}x - 5$ において、$x$ の値が12増加するとき、$y$ の値はいくら増加するかを求める問題です。

代数学一次関数変化の割合傾き
2025/3/21

1. 問題の内容

一次関数 y=14x5y = \frac{1}{4}x - 5 において、xx の値が12増加するとき、yy の値はいくら増加するかを求める問題です。

2. 解き方の手順

一次関数の変化の割合は、傾きに等しいです。つまり、xx が1増加するとき、yy は傾きの値だけ増加します。
この問題では、一次関数 y=14x5y = \frac{1}{4}x - 5 の傾きは 14\frac{1}{4} です。
xx が12増加するとき、yy の増加量は傾きに12をかけたものになります。
yy の増加量 = (傾き) ×\times (xx の増加量)
yy の増加量 = 14×12\frac{1}{4} \times 12
yy の増加量 = 33

3. 最終的な答え

yy の値は3増加します。

「代数学」の関連問題

与えられた連立一次方程式の解を、$s$ と $t$ をパラメータとする形で表す問題です。 連立一次方程式は次の通りです。 $\begin{bmatrix} 1 & -8 & 5 & 6 & -23 \...

線形代数連立一次方程式行列簡約化
2025/6/13

与えられた連立一次方程式の解を求め、パラメータ $s$ と $t$ を用いて一般解を表現する問題です。連立一次方程式は、行列形式で以下のように与えられています。 $\begin{bmatrix} 1 ...

連立一次方程式行列線形代数拡大係数行列行基本変形パラメータ表示
2025/6/13

与えられた6つの対数関数について、定義域を求める問題。 それぞれの関数は以下の通りです。 (1) $y = \log(5x - 1)$ (2) $y = \log((x + 2)(x - 4))$ (...

対数関数定義域不等式真数条件
2025/6/13

与えられた連立一次方程式を解き、解を2つのパラメータ $s$ と $t$ を用いて表す問題です。方程式は行列形式で与えられています。 $ \begin{bmatrix} 1 & 0 & -1 & -1...

連立一次方程式線形代数行列簡約化パラメータ表示
2025/6/13

与えられた連立一次方程式を解き、解をパラメータ $s$ と $t$ を用いて表す問題です。連立一次方程式は以下の通りです。 $\begin{bmatrix} 1 & 0 & -1 & -1 & 2 \...

連立一次方程式行列線形代数簡約階段形
2025/6/13

与えられた連立一次方程式の解を求め、パラメータ $s$ と $t$ を用いた形で表現せよ。連立一次方程式は以下の通りです。 $ \begin{bmatrix} 1 & -2 & 0 & 9 \\ 1 ...

線形代数連立一次方程式解の表現行基本変形
2025/6/13

与えられた連立一次方程式を解き、$x, y, z$ をパラメータ $s$ を用いて表す問題です。連立一次方程式は以下の通りです。 $\begin{bmatrix} -2 & 1 & -1 \\ -1 ...

連立一次方程式線形代数行列行基本変形パラメータ表示
2025/6/13

次の方程式と不等式を解きます。 (1) $|x+4|=2$ (2) $|x-3|<5$ (3) $|x-2| \ge 1$

絶対値方程式不等式
2025/6/13

不等式 $3 - \frac{x+1}{2} > -\frac{4x-5}{6} + \frac{2x-1}{3}$ を解いてください。

不等式一次不等式解法
2025/6/13

与えられた連立一次方程式を解き、$s$ をパラメータとする解を求めます。連立一次方程式は $ \begin{bmatrix} -3 & 9 & 10 \\ 1 & -3 & -1 \end{bmatr...

線形代数連立一次方程式拡大係数行列行基本変形パラメータ
2025/6/13