半径が7cmで、中心角が45度のおうぎ形の面積を求める問題です。

幾何学おうぎ形面積半径中心角
2025/3/21

1. 問題の内容

半径が7cmで、中心角が45度のおうぎ形の面積を求める問題です。

2. 解き方の手順

おうぎ形の面積は、円の面積に中心角の割合をかけたものです。
円の面積は πr2πr^2 で計算できます。ここで、rr は半径です。
おうぎ形の中心角は45度であり、円は360度なので、割合は 45360\frac{45}{360} になります。
したがって、おうぎ形の面積は次の式で計算できます。
おうぎ形の面積 = π×r2×中心角360π \times r^2 \times \frac{中心角}{360}
半径 r=7r=7 cm、中心角 = 4545 度なので、
おうぎ形の面積 = π×72×45360π \times 7^2 \times \frac{45}{360}
π×49×45360=π×49×18=49π8π \times 49 \times \frac{45}{360} = π \times 49 \times \frac{1}{8} = \frac{49π}{8}

3. 最終的な答え

49π8cm2\frac{49π}{8} cm^2

「幾何学」の関連問題

三角形ABCにおいて、$AB=3$, $BC=3$, $AC=4$である。辺BCのCを越える延長上に$CP=3$となる点Pをとり、辺AC上に点Qを取る。 (1) $\triangle ABC$において...

三角形余弦定理正弦定理面積外接円内接円内心外心相似
2025/7/29

平行四辺形ABCDにおいて、対角線AC上に、BP⊥AC、DQ⊥ACとなる点P,Qをとるとき、四角形PBQDが平行四辺形であることを証明する。

平行四辺形証明合同直角対角線角度
2025/7/29

直角三角形ABCにおいて、AB=5, BC=12, CA=13とする。角Aの二等分線と辺BCの交点をDとする。 (1) 線分ADの長さを求める。 (2) 角Aの二等分線と三角形ABCの外接円の交点のう...

三角形角の二等分線余弦定理外接円内接円
2025/7/29

座標平面上に3点A(a, 3), B(-4, 1), C(0, 5)がある(ただし $a > 0$)。線分BC上の点Pからx軸に垂線を下ろし、x軸との交点をQとする。点Pが線分BC上を動くとき、三角形...

座標平面三角形の面積最大値線分二次関数
2025/7/29

平行四辺形ABCDにおいて、各辺の中点をそれぞれP, Q, R, Sとする。四角形PQRSが平行四辺形であることを、与えられた証明の穴埋め形式で証明する。

平行四辺形中点合同証明
2025/7/29

半径 $R$ の球に、底面の半径 $r$ で高さが $2h$ の直円柱が内接している。以下の問いに答える。ただし、$0 < h < R$ とする。 (5) $r$ を $h$ と $R$ の式で表せ。...

立体図形直円柱体積最大値微分
2025/7/29

座標空間内に、中心が原点 $O$ で半径が $2$ の球面 $S$ と、底面が $xy$ 平面上の原点中心、半径 $2$ の円板と、$z=5$ 平面上の点 $(0,0,5)$ 中心、半径 $2$ の円...

空間ベクトル球面円柱平面内積ベクトルの大きさ最大値最小値
2025/7/29

## 1. 問題の内容

座標三角関数極限角度
2025/7/29

関数 $y = -\frac{1}{3}x + 4$ のグラフ上に点A(3, 3)があり、このグラフとy軸との交点をBとする。また、関数 $y = -\frac{1}{3}x$ のグラフ上を $x <...

一次関数平行四辺形面積座標平面直線の式
2025/7/29

長方形ABCDがあり、点MはADの中点である。点PはAを出発し、辺上をB, Cを通ってDまで秒速1cmで動く。点Pが動き始めてからx秒後における線分PMと長方形ABCDの辺で囲まれた図形のうち、点Aを...

図形面積長方形グラフ関数
2025/7/29