与えられた式 $(x+y+1)(x+y-1)(x-y+1)(x-y-1)$ を展開して簡単にします。代数学式の展開因数分解多項式2025/5/121. 問題の内容与えられた式 (x+y+1)(x+y−1)(x−y+1)(x−y−1)(x+y+1)(x+y-1)(x-y+1)(x-y-1)(x+y+1)(x+y−1)(x−y+1)(x−y−1) を展開して簡単にします。2. 解き方の手順まず、最初の二つの括弧と後の二つの括弧をそれぞれ計算します。(x+y+1)(x+y−1)(x+y+1)(x+y-1)(x+y+1)(x+y−1) を計算します。これは (x+y)(x+y)(x+y) を一つの項と見なすと、和と差の積の公式が使えます。(x+y+1)(x+y−1)=((x+y)+1)((x+y)−1)=(x+y)2−12=(x2+2xy+y2)−1=x2+2xy+y2−1(x+y+1)(x+y-1) = ((x+y)+1)((x+y)-1) = (x+y)^2 - 1^2 = (x^2 + 2xy + y^2) - 1 = x^2 + 2xy + y^2 - 1(x+y+1)(x+y−1)=((x+y)+1)((x+y)−1)=(x+y)2−12=(x2+2xy+y2)−1=x2+2xy+y2−1次に、(x−y+1)(x−y−1)(x-y+1)(x-y-1)(x−y+1)(x−y−1) を計算します。これも (x−y)(x-y)(x−y) を一つの項と見なすと、和と差の積の公式が使えます。(x−y+1)(x−y−1)=((x−y)+1)((x−y)−1)=(x−y)2−12=(x2−2xy+y2)−1=x2−2xy+y2−1(x-y+1)(x-y-1) = ((x-y)+1)((x-y)-1) = (x-y)^2 - 1^2 = (x^2 - 2xy + y^2) - 1 = x^2 - 2xy + y^2 - 1(x−y+1)(x−y−1)=((x−y)+1)((x−y)−1)=(x−y)2−12=(x2−2xy+y2)−1=x2−2xy+y2−1したがって、与えられた式は以下のようになります。(x2+2xy+y2−1)(x2−2xy+y2−1)(x^2 + 2xy + y^2 - 1)(x^2 - 2xy + y^2 - 1)(x2+2xy+y2−1)(x2−2xy+y2−1)ここで、(x2+y2−1)(x^2 + y^2 - 1)(x2+y2−1) を一つの項と見なすと、これも和と差の積の公式が使えます。((x2+y2−1)+2xy)((x2+y2−1)−2xy)=(x2+y2−1)2−(2xy)2((x^2 + y^2 - 1) + 2xy)((x^2 + y^2 - 1) - 2xy) = (x^2 + y^2 - 1)^2 - (2xy)^2((x2+y2−1)+2xy)((x2+y2−1)−2xy)=(x2+y2−1)2−(2xy)2=(x2+y2−1)2−4x2y2= (x^2 + y^2 - 1)^2 - 4x^2y^2=(x2+y2−1)2−4x2y2=(x2+y2)2−2(x2+y2)+1−4x2y2= (x^2 + y^2)^2 - 2(x^2 + y^2) + 1 - 4x^2y^2=(x2+y2)2−2(x2+y2)+1−4x2y2=x4+2x2y2+y4−2x2−2y2+1−4x2y2= x^4 + 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1 - 4x^2y^2=x4+2x2y2+y4−2x2−2y2+1−4x2y2=x4−2x2y2+y4−2x2−2y2+1= x^4 - 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1=x4−2x2y2+y4−2x2−2y2+1=(x2−y2)2−2(x2+y2)+1= (x^2 - y^2)^2 - 2(x^2 + y^2) + 1=(x2−y2)2−2(x2+y2)+13. 最終的な答えx4−2x2y2+y4−2x2−2y2+1x^4 - 2x^2y^2 + y^4 - 2x^2 - 2y^2 + 1x4−2x2y2+y4−2x2−2y2+1