与えられた数列の和 $S$ を求めます。数列は以下の通りです。 $S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)}$

解析学級数部分分数分解telescoping sum数列の和
2025/5/13

1. 問題の内容

与えられた数列の和 SS を求めます。数列は以下の通りです。
S=113+135+157++1(2n1)(2n+1)S = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)}

2. 解き方の手順

この数列の各項は部分分数分解できます。一般項 1(2k1)(2k+1)\frac{1}{(2k-1)(2k+1)} について、以下の分解を考えます。
1(2k1)(2k+1)=A2k1+B2k+1\frac{1}{(2k-1)(2k+1)} = \frac{A}{2k-1} + \frac{B}{2k+1}
両辺に (2k1)(2k+1)(2k-1)(2k+1) を掛けると、
1=A(2k+1)+B(2k1)1 = A(2k+1) + B(2k-1)
k=12k = \frac{1}{2} を代入すると、1=A(212+1)+B(2121)=2A    A=121 = A(2 \cdot \frac{1}{2} + 1) + B(2 \cdot \frac{1}{2} - 1) = 2A \implies A = \frac{1}{2}
k=12k = -\frac{1}{2} を代入すると、1=A(2(12)+1)+B(2(12)1)=2B    B=121 = A(2 \cdot (-\frac{1}{2})+1) + B(2 \cdot (-\frac{1}{2})-1) = -2B \implies B = -\frac{1}{2}
したがって、
1(2k1)(2k+1)=12(12k112k+1)\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right)
SS の各項にこの分解を適用すると、
S=12(1113)+12(1315)+12(1517)++12(12n112n+1)S = \frac{1}{2} \left( \frac{1}{1} - \frac{1}{3} \right) + \frac{1}{2} \left( \frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left( \frac{1}{5} - \frac{1}{7} \right) + \cdots + \frac{1}{2} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right)
S=12[(1113)+(1315)+(1517)++(12n112n+1)]S = \frac{1}{2} \left[ \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{7} \right) + \cdots + \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \right]
括弧内は連鎖的に打ち消しあう(telescoping sum)ため、
S=12(112n+1)S = \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right)
S=12(2n+112n+1)S = \frac{1}{2} \left( \frac{2n+1-1}{2n+1} \right)
S=12(2n2n+1)S = \frac{1}{2} \left( \frac{2n}{2n+1} \right)
S=n2n+1S = \frac{n}{2n+1}

3. 最終的な答え

S=n2n+1S = \frac{n}{2n+1}

「解析学」の関連問題

次の関数の導関数と、$x=1$ における微分係数を求めます。 (1) $y = x^3 + 1$ (2) $y = x^2 + 2x$

導関数微分係数関数の微分
2025/5/13

関数 $f(x) = 3x^2$ について、導関数 $f'(a)$ を求め、さらにグラフ上の点 $(1, 3)$ における接線の傾きを求める。

導関数微分接線微分係数
2025/5/13

関数 $f(x) = x^2$ について、 (1) $x=2$ における微分係数 (2) $x=-1$ における微分係数 を、微分の定義に従って求める。

微分微分係数極限関数
2025/5/13

与えられた3つの関数を微分する問題です。 (1) $y = x^2 \log x$ (2) $y = \log(4x + 3)$ (3) $y = \log(-2x)$

微分対数関数合成関数の微分積の微分
2025/5/13

与えられた対数の値を求める問題です。 (1) $\log e^2$ (2) $\log \frac{1}{e^3}$ (3) $\log \frac{1}{\sqrt{e}}$

対数指数対数の性質計算
2025/5/13

与えられた関数 $f(x) = x^2$ について、定義に従って以下の微分係数を求めます。 (1) $x = 2$ における微分係数 (2) $x = -1$ における微分係数

微分微分係数関数の微分極限
2025/5/13

区間 $0 \le x \le 1$ において、関数 $f(x) = -\frac{1}{3}x^3 + \frac{1-b}{3}x^2$ の最大値 $l$ と最小値 $m$ を求める問題です。ただ...

最大値最小値微分導関数増減表関数の解析
2025/5/13

(1) 関数 $f(x) = 4x^3 - 30x^2 + 48x - 13$ の $0 \leq x \leq 5$ における最大値と最小値の差を求める。

微分最大値最小値関数の増減三次関数
2025/5/13

関数 $f(x) = x^3 - 2x^2 - x + 1$ について、$x$ が $1$ から $2$ まで変化するときの平均変化率が、$f'(a)$ に等しくなるような定数 $a$ の値を求めよ。...

微分平均変化率導関数二次方程式解の公式
2025/5/13

極座標 $(r, \varphi)$ で表された物体の位置を直交座標 $(x, y)$ で表したとき、その速度 $(\dot{x}, \dot{y})$ と加速度 $(\ddot{x}, \ddot{...

ベクトル解析極座標速度加速度微分合成関数の微分
2025/5/13