$\int_{0}^{1} \log(x^2+1) \, dx$ を計算せよ。解析学積分定積分部分積分log関数arctan関数2025/5/141. 問題の内容∫01log(x2+1) dx\int_{0}^{1} \log(x^2+1) \, dx∫01log(x2+1)dx を計算せよ。2. 解き方の手順この積分は部分積分を使って解くことができます。u=log(x2+1)u = \log(x^2+1)u=log(x2+1) と dv=dxdv = dxdv=dx とおくと、du=2xx2+1dxdu = \frac{2x}{x^2+1}dxdu=x2+12xdx と v=xv = xv=x となります。したがって、∫01log(x2+1) dx=[xlog(x2+1)]01−∫01x⋅2xx2+1 dx\int_{0}^{1} \log(x^2+1) \, dx = \left[x\log(x^2+1)\right]_0^1 - \int_0^1 x \cdot \frac{2x}{x^2+1} \, dx∫01log(x2+1)dx=[xlog(x2+1)]01−∫01x⋅x2+12xdx=log(2)−2∫01x2x2+1 dx= \log(2) - 2\int_0^1 \frac{x^2}{x^2+1} \, dx=log(2)−2∫01x2+1x2dxここで、∫01x2x2+1 dx=∫01x2+1−1x2+1 dx=∫01(1−1x2+1) dx=[x−arctan(x)]01=1−arctan(1)=1−π4\int_0^1 \frac{x^2}{x^2+1} \, dx = \int_0^1 \frac{x^2+1-1}{x^2+1} \, dx = \int_0^1 (1 - \frac{1}{x^2+1}) \, dx = [x - \arctan(x)]_0^1 = 1 - \arctan(1) = 1 - \frac{\pi}{4}∫01x2+1x2dx=∫01x2+1x2+1−1dx=∫01(1−x2+11)dx=[x−arctan(x)]01=1−arctan(1)=1−4πしたがって、∫01log(x2+1) dx=log(2)−2(1−π4)=log(2)−2+π2\int_{0}^{1} \log(x^2+1) \, dx = \log(2) - 2(1 - \frac{\pi}{4}) = \log(2) - 2 + \frac{\pi}{2}∫01log(x2+1)dx=log(2)−2(1−4π)=log(2)−2+2π3. 最終的な答えlog(2)−2+π2\log(2) - 2 + \frac{\pi}{2}log(2)−2+2π