$\lim_{x \to 0} \frac{\cos(x + \frac{\pi}{2})}{x}$ を計算します。解析学極限三角関数加法定理2025/5/141. 問題の内容limx→0cos(x+π2)x\lim_{x \to 0} \frac{\cos(x + \frac{\pi}{2})}{x}limx→0xcos(x+2π) を計算します。2. 解き方の手順まず、cos(x+π2)\cos(x + \frac{\pi}{2})cos(x+2π) を三角関数の加法定理を用いて展開します。cos(x+π2)=cos(x)cos(π2)−sin(x)sin(π2)\cos(x + \frac{\pi}{2}) = \cos(x)\cos(\frac{\pi}{2}) - \sin(x)\sin(\frac{\pi}{2})cos(x+2π)=cos(x)cos(2π)−sin(x)sin(2π)ここで、cos(π2)=0\cos(\frac{\pi}{2}) = 0cos(2π)=0、sin(π2)=1\sin(\frac{\pi}{2}) = 1sin(2π)=1 であるから、cos(x+π2)=cos(x)⋅0−sin(x)⋅1=−sin(x)\cos(x + \frac{\pi}{2}) = \cos(x) \cdot 0 - \sin(x) \cdot 1 = -\sin(x)cos(x+2π)=cos(x)⋅0−sin(x)⋅1=−sin(x)したがって、与えられた極限は、limx→0cos(x+π2)x=limx→0−sin(x)x\lim_{x \to 0} \frac{\cos(x + \frac{\pi}{2})}{x} = \lim_{x \to 0} \frac{-\sin(x)}{x}limx→0xcos(x+2π)=limx→0x−sin(x)定数倍の極限の性質より、limx→0−sin(x)x=−limx→0sin(x)x\lim_{x \to 0} \frac{-\sin(x)}{x} = -\lim_{x \to 0} \frac{\sin(x)}{x}limx→0x−sin(x)=−limx→0xsin(x)limx→0sin(x)x=1\lim_{x \to 0} \frac{\sin(x)}{x} = 1limx→0xsin(x)=1 であるから、−limx→0sin(x)x=−1-\lim_{x \to 0} \frac{\sin(x)}{x} = -1−limx→0xsin(x)=−13. 最終的な答え-1