2次方程式 $x^2 + x + 5 = 0$ を解く問題です。

代数学二次方程式解の公式複素数
2025/5/14

1. 問題の内容

2次方程式 x2+x+5=0x^2 + x + 5 = 0 を解く問題です。

2. 解き方の手順

この2次方程式を解くために、解の公式を用います。2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
で与えられます。
この問題では、a=1a = 1, b=1b = 1, c=5c = 5 なので、解の公式に代入すると、
x=1±124(1)(5)2(1)x = \frac{-1 \pm \sqrt{1^2 - 4(1)(5)}}{2(1)}
x=1±1202x = \frac{-1 \pm \sqrt{1 - 20}}{2}
x=1±192x = \frac{-1 \pm \sqrt{-19}}{2}
x=1±19i2x = \frac{-1 \pm \sqrt{19}i}{2}

3. 最終的な答え

x=1±19i2x = \frac{-1 \pm \sqrt{19}i}{2}

「代数学」の関連問題

与えられた式 $(x^2 - x - 2)(x^2 - x - 12)$ を展開して整理しなさい。

展開多項式因数分解
2025/5/14

$(a+b+c)^6$ の展開式における、指定された項の係数を求めます。 (1) $a^3bc^2$ の係数 (2) $a^2b^2c^2$ の係数 (3) $a^2b^4$ の係数

多項定理展開係数
2025/5/14

方程式 $2(\log_2 x)^2 + 3\log_2 x = 2$ を解く問題です。

対数二次方程式方程式真数条件
2025/5/14

ある高校の1年生全員が長いすに座る時、1つの長いすに6人ずつ座ると15人が座れなくなる。また、1つの長いすに7人ずつ座ると、使わない長いすが3つできる。長いすの数は何脚以上何脚以下か。

不等式文章題連立方程式数量関係
2025/5/14

与えられた式 $(x^2+x-1)(x^2+x-5)+3$ を展開し、整理して簡単にします。

多項式の展開代数式因数分解式の整理
2025/5/14

与えられた式 $x^2y - x^2z + y^2z - xy^2$ を因数分解します。

因数分解多項式式の変形
2025/5/14

与えられた式 $x^4 - 5x^2 + 4$ を因数分解する。

因数分解多項式二次式代数
2025/5/14

$\alpha = 2\sqrt{2}(1+i)$ とするとき、等式 $|z-\alpha| = 2$ を満たす複素数 $z$ について、以下の問いに答える問題です。ただし、複素数の偏角はすべて $0...

複素数複素数平面絶対値偏角極形式
2025/5/14

16%の食塩水と8%の食塩水を混ぜて、9%以上10%以下の食塩水を500g作りたい。16%の食塩水は何g以上何g以下にすればよいか。

文章題濃度不等式連立不等式
2025/5/14

与えられた複素数 $1+i$ が、極形式で $\sqrt{2} (\cos \frac{\pi}{4} + i\sin \frac{\pi}{4})$ と表されることを確認する問題です。

複素数極形式三角関数複素平面
2025/5/14